
© 2024 Copyright Boomi, LP. All Rights Reserved.

Boomi Cloud™ API Management - Local
Edition
Cluster Design Guide
Version 5.6.2 | November 2024

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

2 | Contents

Contents
Contents 2

Pod - Level Sizing 3

Node - Level Sizing 11

Liveness for Boomi Cloud™ API Management - Local Edition
Components 18
Using Sample Scripts 19

Cluster Storage Summary 21

High Availability Cluster Design 25

Relative Sizing 27

Switching from Tethered to Untethered Mode 31

Configuring SSL for Node to Node Connections 34
Root CA 35

Truststore 39

Keystore 39

Boomi References 47

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

3 | Pod - Level Sizing

Pod - Level Sizing
Cluster sizing recommends number of pods of each type that are required for different
Queries Per Seconds (QPS).

Pod or Container Sizing

Pod sizing covers two aspects- resources required by a pod and number of pods
required for a given QPS and number of refresh token requests for OAuth.

The sizing guidelines are generic and resource requirements will vary by factors like
average payload per traffic request and response, size of config, and number of oauth
(refresh + create tokens) requests.

Because of the upstream feature of td-agent-bit; number of log pods are nearer to the
number of tm pods.

Pod Characteristics

Pod Type Memory Usage CPU
Usage

Storage Usage Network

TML-
NoSQL

Normal - High (in case of
large Oauth traffic)

Normal High in case of
large oauth
traffic

High due to
registry activity

TML-CM High (host 4 services) Normal Low Low

TML-LOG High High Very high very high

TML-SQL Normal Normal Normal Normal

TML-Cache High Normal low High
(depending on
traffic calls)

TML-TM Normal (will see a lot of High very low High

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

4 | Pod - Level Sizing

Pod Type Memory Usage CPU
Usage

Storage Usage Network

G1GC young gc activity)

TML-
Reporting

Hiigh High Very High High

Limits and Requests

Requests are initial allocation of resources and limits define the max memory or CPU a
pod can utilise.

We can define limits for CPU or CPU time, and memory required. When defining limits a
general recommendation is to set the value for requests to half of limit. A general rule of
thumb is to allow a 20% overhead or bump up space for memory and CPU and to
ensure that the application is not paging.

By defining resource limits, you have the following benefits:

l Pods and containers consume resources and there will be situations where one
pod can consume more resources leaving other pods starved for them; a starved
pod will be restarted.

l Memory leaks in the application will drain nodes of memory

l Optimizes use of resources instead of over-provisioning

l Allows for automatic horizontal scaling of Cache, Log and traffic manager pods

For more information about units of resource:

l For kubernetes, see Resource Units in Kubernetes

l For docker, see Runtime options with Memory, CPUs, and GPUs

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-units-in-kubernetes
https://docs.docker.com/config/containers/resource_constraints/

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

5 | Pod - Level Sizing

Kubernetes Pod Sizing

Caution:

1. The following data captured is for indicative recommendations only.

2. You can choose to vertically scale by providing higher CPU and memory
requests and limits.

Service Number of Pods Expected Utilization per Pod

Memory CPU

Cluster manager 1 1GB 500m/0.5 cpu time

SQL 1 1GB 100m/0.1 cpu time

NoSQL 1 2GB 500m/0.5 cpu time

Cache 1 500MB 100m/0.1 cpu time

Log 1 1GB 500m/0.5 cpu time

TM 1 500MB 500m/0.5 cpu time

Reporting 1 1GB 100m/0.1 cpu time

Idle state utilization observed

Service Number
of Pods

Observed Utilization
Per Pod

Memory Per Pod CPU Per Pod

Memory CPU Request Limit Request Limit

Cluster
manager

1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

500 QPS

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

6 | Pod - Level Sizing

Service Number
of Pods

Observed Utilization
Per Pod

Memory Per Pod CPU Per Pod

SQL 1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

NoSQL 1 1 GB 1200m/1.2
cpu time

1000Mi 1250mi 1000m 1500m

Cache 1 500MB 500m/0.5
cpu time

500mi 625Mi 500m 625m

Log 1 2GB 1200m/1.2
cpu time

1000Mi 2500mi 1000m 1500m

TM 1 1.5GB 1500m/1.5
cpu time

1000Mi 1900mi 1000m 1900m

Reporting 1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

Service Number
of Pods

Observed Utilization
Per Pod

Memory Per Pod CPU Per Pod

Memory CPU Request Limit Request Limit

Cluster
manager

1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

SQL 1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

NoSQL 3 1 GB 1200m/1.2
cpu time

1000Mi 1250mi 1000m 1500m

Cache 2 1 GB 500m/0.5 1000Mi 1250mi 500m 625m

1500 QPS In this scenario 50% of traffic is protected by OAuth and an additional 750 QPS is
for refresh tokens

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

7 | Pod - Level Sizing

Service Number
of Pods

Observed Utilization
Per Pod

Memory Per Pod CPU Per Pod

cpu time

Log 4 2GB 1200m/1.2
cpu time

1000Mi 2500mi 1000m 1500m

TM 5 1.2GB 1200m/1.2
cpu time

1000Mi 1500mi 1000m 1500m

Reporting 1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

Service Number
of Pods

Observed Utilization
Per Pod

Memory Per Pod CPU Per Pod

Memory CPU Request Limit Request Limit

Cluster
manager

1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

SQL 1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

NoSQL 3 1 GB 1200m/1.2
cpu time

1000Mi 1250mi 1000m 1500m

Cache 2 1 GB 500m/0.5
cpu time

500Mi 1250mi 500m 625m

Log 8 2.2GB 1200m/1.2
cpu time

1000Mi 2750mi 1000m 1500m

TM 10 1.2GB 1200m/1.2
cpu time

1000Mi 1500mi 1000m 1500m

3000 QPS In this scenario 50% of traffic is protected by OAuth and an additional 1500 QPS
is for refresh tokens

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

8 | Pod - Level Sizing

Service Number
of Pods

Observed Utilization
Per Pod

Memory Per Pod CPU Per Pod

Reporting 1 1.5GB 3000m/3
cpu time

1000Mi 1900Mi 500m 3750m

Service Number
of Pods

Observed Utilization
Per Pod

Memory Per Pod CPU Per Pod

Memory CPU Request Limit Request Limit

Cluster
manager

1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

SQL 1 1GB 500m/0.5
cpu time

1000Mi 1250Mi 500m 625m

NoSQL 3 1 GB 1200m/1.2
cpu time

1000Mi 1250mi 1000m 1500m

Cache 2 1 GB 500m/0.5
cpu time

500Mi 1250mi 500m 625m

Log 8 3GB 1200m/1.2
cpu time

1000Mi 3750mi 1000m 1500m

TM 10 1.2GB 1200m/1.2
cpu time

1000Mi 1500mi 1000m 2500m

3000 QPS with TM vertically scaled and varied payload sizes

Caution:

l All traffic was open i.e. not authenticated via Oauth but controlled.

l Request and response payload was randomly varied between 1Kb to 1Mb

l Traffic manager pods were provided with 2000 mi cpu time instead of 1

l Log pods required higher memory as disk writes were not scaled with the
larger payloads and RAM was used to hold log events waiting to be written

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

9 | Pod - Level Sizing

Service Number
of Pods

Observed Utilization
Per Pod

Memory Per Pod CPU Per Pod

Reporting 1 1.5GB 3000m/3
cpu time

1000Mi 1900Mi 500m 3750m

Caution: Pod performance is dependent on factors like network in most cases
and storage speed especially for log pods. Therefore provide higher resources
for pods based on their characteristics.

Requirements for different QPS shown here are based on actual observation and the
number of pods for TM, Cache and Log have been determined by the following HPA
rules:

kubectl autoscale deployment tm-deploy-0 --min=1 --max=5
--cpu-percent=80
kubectl autoscale statefulsets log-set-0 --min=1 --max=5
--cpu-percent=80
kubectl autoscale statefulsets cache-set-0 --min=1 --max=5
--cpu-percent=80

Pod Placement on Nodes

In the case where users would not like to request and set resource limits, the resource
usage characteristics of each pod dictate placement of workloads on nodes. High
availability deployment also dictates that pods of same type don't end up on same node.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

10 | Pod - Level Sizing

Network Considerations

Local Edition is compatible with all CNCF certified CNIs.

Make sure the POD network is initialized with a unique set of CIDR. Services should be
properly deployed with a unique service IP for POD-POD communication

Storage Considerations

To enable workload to be shifted to other nodes and to allow addtion of new pods, use
dynamic provisioning applying storage provisioners instead of manually creating
persistent volumes.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

11 | Node - Level Sizing

Node - Level Sizing
This section represents cluster sizing recommendations based on various tests
performed on Local Edition 5.x. Some tests used default deployments scripts shipped
with Local Edition, while other tests used customized deployment files (not part of
default scripts). Customizations included running only Traffic Managers on dedicated
nodes in a cluster, while other components were on remaining nodes in the same
cluster. The following tables can be referenced as a guideline for creating K8S clusters
as per your high performance requirements, expressed as Transactions per Second
(TPS), etc. These tests were performed on Local Edition 5.x with variations in response
size and latency of the backend.

Test - Part 1

Test environments details:

1. All the nodes in each cluster were 4 core CPU and 15 GB memory.

2. Load Generation: 8 Jmeter hosts in US West1b (GCP)

3. Backend: 8 Latency Injector hosts in US West1b

4. Local Edition cluster Region: US Central1 (GCP).

5. These tests were performed when TMs used getStats method on memcache
servers for time synchronization(default behavior, as of Local Edition 5.3.1).

Response Size
(Latency) →
Cluster Type ↓

2b (0
ms)

1kb
(100
ms)

256kb
(500
ms)

1-64kb
(100- 300
ms)

1-8kb
(30-180
ms)

4-128kb
(100-300
ms)

Unprotected | Protected (OAuth)

Xtra Small 734 |
781

723 |
571

265 |
229

688 | 610 761 | 545 647 | 385

Small-1 1920 | 1600 | 692 | 1470 | 1200 1850 | 1420 | 1300

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

12 | Node - Level Sizing

Response Size
(Latency) →
Cluster Type ↓

2b (0
ms)

1kb
(100
ms)

256kb
(500
ms)

1-64kb
(100- 300
ms)

1-8kb
(30-180
ms)

4-128kb
(100-300
ms)

Unprotected | Protected (OAuth)

1800 1460 590 1320

Small-2 1300 |
1230

1270 |
1100

366 |
283

1000 | 913 1330 |
733

1000 | 723

Medium-1 2300 |
1600

2100 |
1900

909 |
683

1870 | 1470 2100 |
2000

1950 | 1850

Medium-2 4400 |
3300

3500 |
3300

1300 |
12

3800 | 3400 4200 |
2500

3500 | 3000

Large-1 2300 |
2200

1800 |
1470

1420 |
1100

2500 | 2300 2300 |
1700

1750 | 1700

Large-2 4000 |
3700

3850 |
3300

1500 |
1400

3500 | 3000 4000 |
3380

3000 | 2900

Description of the Topology

Topology Description NoSQL
Count

Configuratio
n Manager
Count

Log
Count

SQL
Count

Cache
Count

TM
Count

Xtra
Small

No of K8S
worker
Node -1

1 1 1 1 1 1

Small No of K8S
worker
Node -2

1 1 1 1 2 3

Small-2 No of K8S
worker
Node - 2

1 1 1 1 1 1

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

13 | Node - Level Sizing

Topology Description NoSQL
Count

Configuratio
n Manager
Count

Log
Count

SQL
Count

Cache
Count

TM
Count

One Node
dedicated
for Traffic
manager
while
remaining
containers
running on
another
node.

Medium-
1

No of K8S
worker
Node - 3

3 (1 per
node)

1 2 (max
1 per
node)

1 3 (1
per
node)

10
(max 4
per
node)

Medium-
2

Same as
Medium-1.
But each
node has
double the
capacity,
i.e. 8 core
and 30 GB

3 (1 per
node)

1 2 (max
1 per
node)

1 3 (1
per
node)

10
(max 4
per
node)

Medium-
3

Similar to
medium-2
cluster of 3
nodes with
3 TMs
(same as
medium-1),
but each
node is 2
core and

3 (1 per
node)

1 2 (max
1 per
node)

1 3 (1
per
node)

3 (max
4 per
node)

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

14 | Node - Level Sizing

Topology Description NoSQL
Count

Configuratio
n Manager
Count

Log
Count

SQL
Count

Cache
Count

TM
Count

8GB.

This test
has been
done to get
no for
licensing for
total of 6
core.

Large-1 No of K8S
worker
Node - 5

3 (max
1 er
node)

1 5 (max
1 per
node)

1 3 (max
1 per
node)

20
(max 4
per
node)

Large-2 No of K8S
worker
Node - 6

3 nodes
dedicated
to all the 15
TMs. All
remaining
component
s running
on
remaining 3
nodes.

3 (max
1 per
node)

1 2 (max
1 per
node)

1 3 (max
1 per
node)

15
(max 5
per
node)

Test - Part 2

In the first part of the test, a limit of 20-21K TPS was reached for the extra large cluster.
TPS was not increasing linearly as the cluster scaled horizontally. On further analysis, it
was determined that for each request, each TM was connecting to each connected
memcache server to get time reference for quota enforcement which created a
bottleneck. Better throughput is available if the system time of TMs is used and by

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

15 | Node - Level Sizing

making sure that all the servers are in sync (using NTP or through other mechanism).
The property to switch between these two mechanisms is available in TM but it is not
exposed via TM property file. This is achieved by using the tml_tm_properties.json
deployment property file. To use the cache servers as a shared time reference, set the
use_system_time property value to false.

Create a k8s secret out of this property file and overwrite the existing template inside the
TM container. With this tweak, a TPS of 110K-115K was achieved for a specific cluster.
In this series of tests, extra large type of clusters were created with varying nodes from 8
to 30. In each of the cluster, TMs were run separately on dedicated nodes, log
containers on dedicated nodes and other type of containers shared the remaining
nodes. No two nosql or cache or log or TMs were running on the same node using K8S
anti-affinity feature. CPU utilization was around 55-60% on TM nodes when reaching
these max TPS. The details of the tests are shown in the following table.

Cluster TPS (Unprotected)

Extra Large -1

10 Nodes.

5 TMs - each on a single node dedicated for TM

2 Logs - each on single node dedicated for log

3 NoSQL - each on separate node

3 Cache - each on separate node but shared with NoSQL

1 SQL - On a node shared with NoSQL/cache

1 CM - On a node shared with NoSQL/cache

40000

Extra Large -2

15 Nodes.

8 TMs - each on a single node dedicated for TM

2 Logs - each on single node dedicated for log

3 NoSQL - each on separate node

3 Cache - each on separate node but shared with NoSQL

55000

configuring-properties-common-to-all-deployments.htm#TABLE_C10791C642614F39AE29267F99053618

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

16 | Node - Level Sizing

Cluster TPS (Unprotected)

1 SQL - On a node shared with NoSQL/cache

1 CM - On a node shared with NoSQL/cache

Extra Large -3

20 Nodes.

13 TMs - each on a single node dedicated for TM

2 Logs - each on single node dedicated for log

3 NoSQL - each on separate node

5 Cache - each on separate node but shared with NoSQL

1 SQL - On a node shared with NoSQL/cache

1 CM - On a node shared with NoSQL/cache

85,000

Extra Large -4

27 Nodes.

20 TMs - each on a single node dedicated for TM

2 Logs - each on single node dedicated for log

3 NoSQL - each on separate node

5 Cache - each on separate node but shared with NoSQL

1 SQL - On a node shared with NoSQL/cache

1 CM - On a node shared with NoSQL/cache

110,000

The deployment files were customized so that each TM and log was running on a single
and separate node while NoSQL, SQL, and CM caches shared the separate nodes.
However, while sharing nodes, each NoSQL and cache were running on separate
nodes. The pod's anti affinity rules were combined with node label. Each cluster was
divided into in three groups. One group of nodes were labeled with label (deploy = tm)
where only TMs were deployed, the second group of nodes were labeled as (deploy = log)
where only log was deployed while the third group of nodes were labeled as (deploy =
other) for running remaining components. We used these labels in corresponding

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

17 | Node - Level Sizing

deployment files under the nodeSelector attribute. Contact Local Edition Support for the
customized deployment file. This is a compressed system folder usually found in the
deployment folder, which has updated or customized yaml files.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

18 | Liveness for Boomi Cloud™ API Management - Local Edition Components

Liveness for BoomiCloud™API
Management - Local EditionComponents
Scaling up or scaling down of pods or containers is required in burst and trickle down
situations to ensure that the services are resilient.

It is a good practice to have odd number of NoSQL pods per zone and odd number of
zones for tolerance and resilience. Cache, Log, and TM pods can scale by setting HPA
rules in Kubernetes and Openshift but has to be manually done in Docker swarm
clusters

The kubelet uses liveness probes to know when to restart a container. For example,
liveness probes could catch a deadlock, where an application is running, but unable to
make progress. Restarting a container in such a state can help to make the application
more available. In case of Boomi Cloud™ API Management - Local Edition(Local
Edition), liveness can be defined for NoSQL, CM and SQL container. Liveness criteria
for these containers is that services present inside these containers should be running.

Liveness can be defined only for k8s and openshift setup not for docker swarm setup

Containe
r

Command Initial
Delay
Seconds

Period
Seconds

Failure
Threshol
d

Success
Threshol
d

Log File

CM /usr/local/bin/cm-
liveness-
probe.sh

800 30 12 1 cm_
livenes
s_
probe.lo
g

NoSQL /usr/local/bin/nos
ql-liveness-
probe.sh

500 30 10 1 nosql_
livenes
s_
probe.lo
g

Suggested Parameters For Liveness

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

19 | Liveness for Boomi Cloud™ API Management - Local Edition Components

Containe
r

Command Initial
Delay
Seconds

Period
Seconds

Failure
Threshol
d

Success
Threshol
d

Log File

SQL /usr/local/bin/sql-
liveness-
probe.sh

300 30 10 1 sql_
livenes
s_
probe.lo
g

Note: These suggested parameters depends on number of containers,
installation platform, network connectivity and so on. In case container is
restarting itself again and again while cluster set up due to liveness probe
failure, these suggested parameters are to be adjusted.

Liveness Logs

Liveness log file in the container can be found at location - /opt/mashery/containeragent/log.
For every day new file is generated for liveness logs. Liveness logs more than 5 days
ago are deleted from container.

Using Sample Scripts
Sample liveness scripts for CM, NoSQL and SQL containers are present in the Local
Edition distribution package at location samples/deploy/onprem/k8s

Procedure
1. From sample liveness script, copy the following livenessProbe section defined

under containers section. Do not copy complete sample script.

livenessProbe:
exec:
command:
- /bin/bash

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

20 | Liveness for Boomi Cloud™ API Management - Local Edition Components

- -c
- /usr/local/bin/sql-liveness-probe.sh
failureThreshold: 10
initialDelaySeconds: 300
periodSeconds: 30
successThreshold: 1

2. Put the liveness probe section in the container yaml file under manifest folder.

For example - liveness probe for SQL container should be put in all sql-pod-*.yaml
present under manifest folder.

3. In the yaml file, liveness probe section should be present under containers section
after the imagePullPolicy tag.

Indentation of liveness probe section should be proper. It should be in line with the
imagePullPolicy tag.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

21 | Cluster Storage Summary

Cluster StorageSummary
This section describes storage sizing for different components.

Log

The Log container receives various logs from all other containers. The following
information summarizes the disk requirements for a single log pod/ container assuming
one instance of each all other containers.

Some processes, such as container agent or metrics collector, run inside each container
and generate logs at an almost fixed rate given no traffic. The variation comes from the
Traffic Manager container as it will generate access logs at a different rate at different
QPS and from NoSQL pod when a lot of tokens are being created frequently. But on
average, the assumption is that the disk size for a Log container can be computed as
sum of size for logs of constant processes of other containers and size of access logs
which can vary according to QPS.

Disk size for one log pod/ container for 1 day = Disk size for log from all containers (1
instance of each type) for 1 day + Disk Size for access log generated by Traffic
Manager.

Size of logs generated by one instance of each component in one day:

l NoSQL - 65 MB

l SQL - 60 MB

l Cache - 65 MB

l CM - 95 MB

l TM (excluding Access Log) - 65 MB

l Log - 40 MB

So the disk required (approximate) for one day could be calculated as:

Total disk (in MB) = (No of NoSql * 65)+ (No of Sql * 60) + (No of Cache * 65) + (No
of CM * 95) + (No of TM * 65) + (No of Log * 40) + (access log size for a given QPS)

For example, if you are running one instance of each component and average QPS is
around 200, the disk size required for a single day would be:

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

22 | Cluster Storage Summary

disk = (1 * 65) + (1 * 60) + (1 * 65) + (1 * 95) + (1 * 65) + (1 * 40) + (360 * 2 * 24) =
17670 MB (17.67 GB)

Note: 360 MB is the size of Access Log generated at 200 QPS in 30 minutes.
Refer to the following table on Unprotected Traffic.

Test Duration 30
Min
utes

cont
aine
r

210 QPS 406 QPS 602 QPS 788 QPS

bef
ore

af
te
r

d
elt
a
(
M
b)

bef
ore

af
te
r

d
elt
a
(
M
b)

bef
ore

af
te
r

d
elt
a
(
M
b)

bef
ore

af
te
r

d
elt
a
(
M
b)

/mnt/data/trafficm
anager/

log-
set-
0-0

0.4
6

0.
8
2

0.
36

0.8
2

1.
6
0

0.
78

1.6
0

2.
5
0

0.
90

2.5
0

3.
8
0

1.
30

/mnt/data/trafficm
anager/access/

0.2
1

0.
3
7

0.
16

0.3
7

0.
6
7

0.
30

0.6
7

1.
2
0

0.
53

1.2
0

1.
7
0

0.
50

/mnt/data/trafficm
anager/enriched/

0.2
5

0.
4
5

0.
20

0.4
5

0.
8
3

0.
38

0.8
3

1.
4
0

0.
57

1.4
0

2.
1
0

0.
70

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

23 | Cluster Storage Summary

NoSQL

NoSQL storage requirement is primarily driven by number of OAuth tokens needed. For
example, if the tokens are getting created at the rate of 200 QPS, it will need close to
177 MB space. Refer to the following table on OAuth (Token Creation).

Test
Duration

30
Mi
nut
es

co
nta
ine
r

200 QPS 354 QPS 590 QPS 757 QPS

be
for
e

aft
er

de
lta
(M
b)

be
for
e

aft
er

de
lta
(M
b)

be
for
e

aft
er

de
lta
(M
b)

bef
ore

aft
er

de
lta
(M
b)

Number of
Tokens ca

ss-
se
t-0-
0

17
9,
31
9

39
4,
78
7

21
5,
46
8

39
4,
78
7

72
7,
04
0

33
2,
25
3

72
7,
04
0

1,2
15,
676

48
8,
63
6

1,2
15,
676

1,5
59,
298

34
3,
62
2

/var/lib/cass
andra

87
26
4

17
7

26
4

57
5

31
1

57
5

11
26

55
1

11
26

18
43

71
7

/var/lib/cass
andra/com
mitlog/

48
13
7

89
13
7

30
1

16
4

30
1

573
27
2

573 922
34
9

/var/lib/cass
andra/data/

39
12
8

89
12
8

27
5

14
7

27
5

510
23
5

510 828
31
8

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

24 | Cluster Storage Summary

Cache

Cache component does not require much storage, so you can select as minimal as
possible.

SQL

SQL database primarily stores configuration data. 2 GB storage should suffice.

Note: The above calculation is based on some assumptions. Therefore, you
should consider some buffer while sizing.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

25 | High Availability Cluster Design

HighAvailabilityClusterDesign
Local Edition architecture is quite flexible, and can be scaled up or down as needed. But
other than TPS consideration, to achieve High Availability (HA), you need to carefully
design the cluster. Container orchestrators (K8S or Swarm) can take care of
components failure, for example, if one Local Edition component shuts down due to
some reason, they will bring another one to maintain the given number of instances if all
the criteria are satisfied. But to achieve HA in case of infrastructure failure (such as node
failure, zone failure, etc.) of K8S or Swarm, extra planning should be done before
creating cluster. HA at different levels requires different planning. The following sections
provide some general guidelines to achieve HA for the Local Edition cluster to work as
expected.

Cluster considerations for High Availability

Node/Instance redundancy

If your K8S or swarm cluster has been designed just to meet a TPS requirement, then
node failures might degrade Local Edition functioning. Situations can be more
challenging in case you placed some deployment constraints during initial deployment
without HA considerations. One such deployment constraint could be that three NoSQL
pods should be deployed on three different nodes in a three K8S worker nodes cluster. If
any node failure happens in this scenario, then the NoSQL pod which was running on
this node will not be redeployed on remaining two nodes. Unless the third node joins the
K8S cluster, the Local Edition cluster will work (assuming no other constraint) but remain
in inconsistent state. Boomi recommends having extra node/s in the K8S/ Swarm cluster
if any pod/ container deployment constraints is in place. Even in the case of no
deployment constraint, extra nodes might come handy in maintaining TPS in case of
node failure.

Availability Zone Redundancy

Local Edition supports multi zone deployment. You can deploy Local Edition
components spread across different availability zones in all major cloud platforms (AWS,
Azure, GCP, etc.). In multi zone deployment, configuration and token data is
continuously synced across zones, so even in case of a zone failure, another zone can
still serve the traffic. Multi zone deployment should be considered during the initial
planning phase itself. Extending the existing cluster is currently not supported. Also, out

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

26 | High Availability Cluster Design

of the box multi zone deployment is supported only in K8S. But it can be achieved in
Docker Swarm as well.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

27 | Relative Sizing

RelativeSizing
The following section describes Local Edition relative (T-Shirt) sizing topologies and
corresponding configurations.

Note: The value for k8s_node_size varies according to cloud environment.
t2.xlarge is for 4 core CPU and 16 GB memory machines in AWS. The
equivalent machine would be n1-standard-4 in GCP and D4s_v3_standard in
Azure.

Topology Kubernetes
Configuration

Pod Configuration

Xtra Small k8s_master_count: 1,

k8s_master_size:
"t2.medium",

k8s_master_volume_size:
32,

k8s_node_count: 1

k8s_node_size:
"t2.xlarge",

k8s_node_volume_size:
32,

tml_cm_count: 1,

tml_tm_count: 1,

tml_cache_count: 1,

tml_sql_count: 1,

tml_log_count: 1,

tml_nosql_count: 1,

Small k8s_master_count: 1,

k8s_master_size:
"t2.medium",

k8s_master_volume_size:
32,

k8s_node_count: 2

tml_cm_count: 1,

tml_tm_count: 3, (max 2 per node)

tml_cache_count: 2, (1 per node)

tml_sql_count: 1,

tml_log_count: 1,

tml_nosql_count: 1,

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

28 | Relative Sizing

Topology Kubernetes
Configuration

Pod Configuration

k8s_node_size:
"t2.xlarge",

k8s_node_volume_size:
32,

Small-2 k8s_master_count: 1,

k8s_master_size:
"t2.medium",

k8s_master_volume_size:
32,

k8s_node_count: 2, (1
node dedicated to 1 TM)

k8s_node_size:
"t2.xlarge",

k8s_node_volume_size:
32,

tml_cm_count: 1,

tml_tm_count: 1,

tml_cache_count: 1,

tml_sql_count: 1,

tml_log_count: 1,

tml_nosql_count: 1,

Medium-1 k8s_master_count: 1,

k8s_master_size:
"t2.medium",

k8s_master_volume_size:
32,

k8s_node_count: 3,

k8s_node_size:
"t2.xlarge",

k8s_node_volume_size:
32,

tml_cm_count: 1,

tml_tm_count: 10, (max 4 per node)

tml_cache_count: 3, (1 per node)

tml_sql_count: 1,

tml_log_count: 2, (max 1 per node)

tml_nosql_count: 3, (1 per node)

Medium-2 medium-2 cluster of 3
nodes with 10 TMs (same

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

29 | Relative Sizing

Topology Kubernetes
Configuration

Pod Configuration

as medium-1). Here,
nodes are 8 core and 30
GB.

Medium-3 medium-2 cluster of 3
nodes with 3 TMs (same
as medium-1). Here, each
node is 2 core and 30 GB.

This test has been done to
get number for licensing
for total of 6 core.

tml_cm_count: 1, tml_tm_count: 3, (max 1 per
node) tml_cache_count: 2, (1 per node) tml_
sql_count: 1, tml_log_count: 2, (max 1 per
node) tml_nosql_count: 3, (1 per node)

Large-1 k8s_master_count: 1,

k8s_master_size:
"t2.medium",

k8s_master_volume_size:
32,

k8s_node_count: 5,

k8s_node_size:
"t2.xlarge",

k8s_node_volume_size:
32,

tml_cm_count: 1,

tml_tm_count: 20, (max 4 per node)

tml_cache_count: 3, (max 1 per node)

tml_sql_count: 1,

tml_log_count: 5, (max 1 per node)

tml_nosql_count: 3, (max 1 per node)

Large-2 k8s_master_count: 1,

k8s_master_size:
"t2.medium",

k8s_master_volume_size:
32,

k8s_node_count: 6 (3
Dedicated for TM),

tml_cm_count: 1,

tml_tm_count: 15, (max 5 per node)

tml_cache_count: 3, (max 1 per node)

tml_sql_count: 1,

tml_log_count: 2, (max 1 per node)

tml_nosql_count: 3, (max 1 per node)

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

30 | Relative Sizing

Topology Kubernetes
Configuration

Pod Configuration

k8s_node_size:
"t2.xlarge",

k8s_node_volume_size:
32,

Xtra Large-
1

k8s_master_count: 1,

k8s_master_size:
"t2.medium",

k8s_master_volume_size:
32,

k8s_node_count: 8,

k8s_node_size:
"t2.xlarge",

k8s_node_volume_size:
32,

tml_cm_count: 1,

tml_tm_count: 40, (max 5 per node)

tml_cache_count: 5, (max 1 per node)

tml_sql_count: 1,

tml_log_count: 3, (max 1 per node)

tml_nosql_count: 5, (max 1 per node)

Xtra Large-
2

k8s_master_count: 1,

k8s_master_size:
"t2.medium",

k8s_master_volume_size:
32,

k8s_node_count: 10 (5
dedicated for TM),

k8s_node_size:
"t2.xlarge",

k8s_node_volume_size:
32,

tml_cm_count: 1,

tml_tm_count: 40, (max 8 per node)

tml_cache_count: 5, (max 1 per node)

tml_sql_count: 1,

tml_log_count: 3, (max 1 per node)

tml_nosql_count: 5, (max 1 per node)

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

31 | Switching from Tethered to Untethered Mode

Switching fromTethered toUntethered
Mode
The following section describes migrating from tethered mode to untethered mode.

In tethered mode, configuration of API is done in Cloud API Management (CAM) Control
Center. The configuration data is stored in Cloud API Management database and
synced to on-prem clusters via Mashery Onprem Manager (MOM) periodically.

In untethered mode, configuration of API is done in the Local Edition Configuration UI
and configuration data is stored in the local database.

If all data in the Local Edition cluster needs to be in the local cluster, the process of
migrating to untethered will download existing data from tethered mode to local cluster.

Switching from tethered to untethered mode is supported when:

• Migrating from version 5.3.x, 5.4.x, 5.5.x, 5.6.0 clusters in tethered mode to 5.6.x
untethered mode.

Limitations

Switching from tethered to untethered is a one-way conversion. Once the cluster is
switched to untethered, switching back to tethered is not supported. This is because
after switching to untethered mode:

• The area ID of configurations from Cloud APIM (MOM) are reset to Local Edition
default area id (2222)

• Any new or update to configuration of Local Edition Control Center are not
propagate back to Cloud APIM.

During migration, configuration changes should not be done in Local Edition Config UI
as changes made in Local Edition Config UI may be overwritten from the changes in
Cloud APIM Control Center.

Also, the audit log history is not migrated to the Local EditionCluster. As a result, the
history for changes (for example, to services and packages) are not available after
migration.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

32 | Switching from Tethered to Untethered Mode

Important: After moving to untethered, any Cloud APIM reporting features will no longer
be available.

Migration Flow

When preparing for migration, keep in mind that the migrated cluster must have all the
configuration data needed from existing SQL database in the tethered mode cluster prior
to the migration. The migrated cluster must have all the OAuth tokens from existing
NoSQL database in the tethered mode cluster prior to the migration. Then, the migrated
untethered cluster must have all the API configuration data and OAuth tokens from
Cloud APIM.

Overall, the migration is done similar to rolling upgrade for all components with the
exception of SQL database, due to the SQL database having the replication group
enabled in the migrated cluster.

1. Prepare the existing tethered mode Local Edition 5.X cluster for migration.

a. Backup HTTPs client profiles from SQL. See the details in "Dump MySQL
Data from the Old TML Cluster" of Upgrade to TML 5.5.2 K8S from TML 5.6.0
K8S cluster (Tethered). The backup will be restored to new cluster in a
subsequent step.

b. Note the existing NoSQL persistence volume configuration in new cluster. The
persistence volume is reused in the new cluster.

2. Bring up the new Local Edition 5.6 cluster in untethered mode.

a. Specify the MOM key and MOM secret for the tethered area in the cluster
configuration.

b. Reuse the existing NoSQL persistence volume configuration in new cluster
from step 1.

3. Restore the HTTPs client profiles to SQL in the new cluster. See the details in
"Copy MySQL Data dumped from the Old TML Cluster to the New TML Cluster"
and, "Import MySQL Data dumped from the Old TML Cluster to the new TML
Cluster" of Upgrade to TML 5.5.2 K8S from TML 5.6.0 K8S cluster (Tethered).

4. Verify that all containers in new cluster are ACTIVE. To verify cluster status, run
the following command in the CM container/pod:

clustermanager list components

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

33 | Switching from Tethered to Untethered Mode

5. Initiate a configuration data download with onpremloader API. To initiate a full
download of configuration data from MOM, use the following curl call:

curl -v -XPUT "http://127.0.0.1:8080/onpremloader?apiKey={momkey}&apiSecret=
{momSecret}&switchTo=tethered"

For example:

curl -v -XPUT
"http://127.0.0.1:8080/onpremloader?downloadAndSync=true&apiKey=REDACTED&a
piSecret=REDACTED&switchTo=tethered"

apiKey and apiSecret are required to enable the MOM sync if they are not
specified in the step 2 above.

6. Initiate a full cache load populate the cache. A request to onpremloader is needed
to initiate loading of data from MOM, which is needed to be done in the Cache
container or pod. To initiate a full cache load, use the following call.

/opt/javaproxy/proxy/cacheloader --service --mapi --devclass --packager --
httpsclientsecurity --env production --verbose

7. Verify that configuration is migrated. Login to APIM Local Control Center UI to
verify that API Definition, Packages, Applications, etc are available.

8. Verify that protected calls are working with new and existing tokens. Create a new
token and make calls to a migrated protected endpoint and verify that request is
successful.

9. Switch back to untethered mode. To switch to untethered mode after configuration
data are download and verify, run:

curl -v -XPUT "http://127.0.0.1:8080/onpremloader?switchTo=untethered""

10..Configure new services in Local Edition Configuration Manager UI.

11..Verify that new services are working.

Migration for all versions of 5.3.X, 5.4.X, 5.5.X (including 5.6.0) tethered to 5.6
untethered follow the same steps.

After migration, data in Cloud APIM will remain in Cloud APIM and will not be synced to
Local Edition after switching to untethered mode.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

34 | Configuring SSL for Node to Node Connections

ConfiguringSSL forNode toNode
Connections
The following section describes how to configure SSL for node-to-node connections.

New Properties

The following new properties have been added to tml_nosql_properties.json to control
the server_encryption_options:

"server_internode_encryption": "none",

"server_keystore_password": "changeme",

"server_truststore_password": "changeme",

"server_require_client_auth": false

For the server_encryption_options section of the cassandra.yaml file, the following
options are supported for the server_internode_encryption setting:

• none - No encryption (default)

• all - Encrypt all internode communications

For the server_require_client_auth setting:

• When set to "false", client auth in Cassandra internode communication is not
required.

• When set to "true", client auth in Cassandra internode communication is required.

Added Reference Keystore and Truststore

In the reference deployment scripts, under folder "properties":

• tml-nosql.p12: sample keystore for tml-nosql

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

35 | Configuring SSL for Node to Node Connections

• tml-nosql-trust.p12: sample truststore for tml-nosql

How to Prepare Keystore and Truststore

Note:

• There are other ways to prepare the keystore and truststore, for example, using
OpenSSL.

• For additional reference, see "Creating local SSL certificate and keystore files."

Root CA
Create a New keystore for Root CA

File => New to created a PKCS #12 format keystore

Generate Root CA

Tools => Generate Key Pair to generate a new key pair as root CA

Algorithm: RSA

Key Size: 2048

Validity Period: 10 years

Extension: Use Standard Template, select "CA"

https://docs.datastax.com/en/security/6.7/security/secSetUpSSLCert.html#secSetUpSSLCert

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

36 | Configuring SSL for Node to Node Connections

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

37 | Configuring SSL for Node to Node Connections

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

38 | Configuring SSL for Node to Node Connections

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

39 | Configuring SSL for Node to Node Connections

Truststore
Export Root CA Certificate Chain from Root CA Keystore

Here is the dialog for exporting certificate chain:

Create a New Keystore in PKCS #12 format to be used as Truststore

File => New

Import the Exported Root CA Certificate Chain

Tools => Imported Trusted Certificate

Keystore
Use Root CA to Sign a New Key Pair

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

40 | Configuring SSL for Node to Node Connections

Algorithm: RSA

Key Size: 2048

Validity: 10 years

Extensions:

• use Standard Template "SSL Client";

• remove "Extended Key Usage";

• add "Basic Constraints" extension;

• add "Subject Alternative Name" extension with the following contents:

— DNS Name: *.cass-svc-0.default.svc.cluster.local

— DNS Name: *.cass-svc-1.default.svc.cluster.local

— DNS Name: *.cass-svc-2.default.svc.cluster.local

Save the key pair with entry name "default.svc.cluster.local"

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

41 | Configuring SSL for Node to Node Connections

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

42 | Configuring SSL for Node to Node Connections

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

43 | Configuring SSL for Node to Node Connections

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

44 | Configuring SSL for Node to Node Connections

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

45 | Configuring SSL for Node to Node Connections

Upload Keystore and Truststore in Local Edition Installer

Upload Keystore in Local Edition Installer

Use the following Jenkins job in Local Edition Installer to upload keystore for Cassandra
server encryption.

Upload Truststore in Local Edition Installer

Use the following Jenkins job in Local Edition Installer to upload truststore for Cassandra
server encryption.

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

46 | Configuring SSL for Node to Node Connections

Boomi Cloud™ API Management - Local Edition Cluster Design Guide

47 | Boomi References

BoomiReferences
Refer to these links to learn more about Boomi privacy policy, terms of service, and
Boomi help documentation:

Privacy Policy
Terms of Service
Help Documentation

https://boomi.com/privacy/
https://boomi.com/legal/service/
https://help.boomi.com/

	Contents
	Pod - Level Sizing
	Node - Level Sizing
	Liveness for Boomi Cloud™ API Management - Local Edition Components
	Using Sample Scripts

	Cluster Storage Summary
	High Availability Cluster Design
	Relative Sizing
	Switching from Tethered to Untethered Mode
	Configuring SSL for Node to Node Connections
	Root CA
	Truststore
	Keystore

	Boomi References

