
© 2024 Copyright Boomi, LP. All Rights Reserved.

Boomi Cloud™ API Management - Local
Edition
Reporting Services Guide
Version 5.6.2 | November 2024

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

2 | Contents

Contents
Contents 2

Overview 4
Reporting Services Concepts 4

Reporting Services Architecture 5

Types of Reports 7
Traffic Summary 7

Mashery CAM Operations 7

Infrastructure Planning, Sizing and Deployment 9

Prerequisites 11

Installing the Reporting Services 14

Deploying the Reporting Services 15
Deploying the Reporting Services along with TML-Cluster 15

Deploying the Reporting Services Separately after TML-Cluster Deployment 23

Deploying Multiple Reporting Services 24

Quick Start Deployment 25

Configuring Clusters 26

Customizing the User Interface 32
Grafana Dashboards 32

Fluentd Configuration 33

Loki Configuration 34

Prometheus Configuration 34

TML-Reporting Configuration 34

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

3 | Contents

Verification 35

Accessing Grafana Dashboards and Reports 37
Managing Users and Roles 38

Managing Dashboards 39
Customer Traffic Detail Reports 41

TML Cache Metrics 47

TML CM Metrics 52

TML Logs Metrics 57

TML NoSQL Metrics 59

TML Reporting Metrics 63

TML SQL Metrics 64

TML TM Metrics 69

TML Verbose Logs 76

TML Container Logs 77

Customer Traffic Summary 81

Customizing Dashboards and Reports 85
Basic Customization 85
Adding Alerts 85

Adding Alert Dashboard 88

Changing Bucket Interval 90

Changing Data Visualization 91

Persistence of Dashboards and Reports 94
Importing or Exporting Dashboards 94

Uploading Custom Dashboards at the Time of Deployment 95

FAQs 96

Troubleshooting 102

Boomi References 105

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

4 | Overview

Overview
Boomi Cloud™ API Management - Local Edition(CAM) Reporting Services is a collection
and visualization of container application's logs and visualization on top of access logs
and metrics. It supports out of box reports on traffic, on metrics and troubleshooting
using logs without requiring heavy machinery for data analysis. This provides insights
into the health of services and resource utilization by each service inside the pod. It also
provides a search view to filter logs of different services and applications running in each
pod. It can easily be configured to visualize the other metrics which are not provided in
out of box reports.

The intent of this document is to provide guidelines with respect to reporting services, its
features and best practices.

This document describes architectural concepts related to reporting services for Boomi
Cloud API Management - Local Edition. The document includes the different reporting
parameters, steps required to configure parameters, and design techniques for better
performance.

Related Links
l Reporting Services Architecture

l Types of Reports

l Prerequisites

l Installing the Reporting Services

Reporting ServicesConcepts
The Reporting Services component provides a dashboard of reports to give the following
insights into your Mashery CAM Local cluster:

l Resource utilization by individual services on each pod

l Health of services

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

5 | Overview

l Monitoring metrics

l Traffic summary

l Verbose logs
For more information, see Types of Reports.

User Management

Add users who can view, edit and create the reports. For more information, see
Managing Users and Roles.

Alerting

Local Edition Reporting Service provides an option to configure alerts as per your user
requirements. For more information, see Adding Alerts.

Preferences

Using preferences, you can make changes to the UI. For more information, see
Customizing the User Interface.

Reporting Services Architecture
The Reporting service container is a composite service running the following:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

6 | Overview

Services Hosted by Reporting Services Container

The Reporting Services Container hosts different services to receive, transform,
aggregate and visualize data from tml-log service. The Container hosts the following
services:

l Loki: Loki is a horizontally-scalable, highly-available, multi-tenant log aggregation
system. Loki stores the container logs and verbose logs, which is then used by
Grafana to visualize using Explore view.

l Prometheus: Prometheus is an open-source systems monitoring and alerting
toolkit that is used to collect counts for access logs and metrics using pull
mechanism from the fluentd scrap path.

l Grafana: Grafana is an open-source platform for data visualization, monitoring and
analysis that is used to visualize the Prometheus data points.

l Fluentd: Fluentd is used to consume data from log service and perform count
aggregation for access logs and split metrics logs into different metrics data points.
This can be extended further to transform logs to support data models for
Prometheus and Loki.

How the Reporting Service is Deployed

The Reporting service deployment follows the side car design pattern, making it an opt-
in service for users. It can be switched on or off. It is recommended to run the reporting
service on a swarm or K8s node, which is not used by the TML components.

To deploy the Reporting service:

1. Create, configure, and start TML cluster.

2. Run TML reporting (ideally within same TML network but is not mandatory).

3. Configure the log service(s) in the TML cluster to start sending data to the
reporting service.

How the Reporting Service is Deployed for Quick Start Deployments

In the case of a quick start deployment of the TML cluster:

1. The Reporting service is auto-started with the other TML components.

2. The Log service is pre-configured to send data to the reporting service.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

7 | Overview

Types of Reports
Out of the box reports are divided into two categories:

l Traffic Summary: Displays an overall summary of the Mashery traffic and includes
a technical summary of a platform.

l Mashery CAM Operations: Displays reports which are mostly based on the usage
and consumption of different APIs.

o Traffic Detailed Reports

o TML Metrics

o TML Container Logs

Traffic Summary
The Traffic Summary Dashboard provides a high-level view of your APIs with analytic
metrics and trends, without any data collection and analysis tasks required.

The following reports are available:

l Total API Count of different months

l Top 5 services used in the current month

l Top 5 packages used in the current month

l Bottom 5 services used in the current month

l Bottom 5 packages used in the current months

l Percentage summary of successful, Unsuccessful(596) and Blocked(4xx)

Mashery CAMOperations
The following reports are available:

Report Contains

Traffic Detailed l Traffic QPS Rate(calls per second) report

traffic-detailed-reports.htm
tml-metrics.htm
tml-container-logs2.htm

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

8 | Overview

Reports l Traffic Rate based on Service

l Traffic Rate based on Package

l Traffic Rate based on Status code

l Traffic Rate based on Traffic Manager

l 596 Calls Rate

TML Metrics l Process status view

l Process's uptime

l Over all CPU utilization by processes in a pod

l CPU utilization by each process

l Overall Memory utilization by processes in a pod

l Memory utilization by each process

TML Container
Logs

It is a log view panel for a process's logs in pod

l Verbose logs summary panel

l Detailed verbose logs panel to view InboundRequest,
TargetRequest, TargetResponse, OutboundResponse.

Verbose Logs
View

It provides call debugging and includes

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

9 | Infrastructure Planning, Sizing and Deployment

InfrastructurePlanning, Sizing and
Deployment

Infrastructure Planning

Node sizing

The following table shows the recommended node sizes for the Reporting pod/container
depending on the Traffic Volume.

SrNo QPS on TML
Cluster

CPU for Reporting
Node

Memory for Reporting
Node

1 1K - 3K 4 cores 15 GB

Volume Sizing

TML-Reporting stores everything on the disk attached to it, as it stores Prometheus data
up to 1 year. So, you will need to assign a volume of large size to the TML-Reporting
container/pod.

You can modify the storage capacity by modifying "tml_reporting_storage_size" in the
manifest file.

Node Creation

TML-Reporting requires a dedicated node for its scheduling and execution. So, you
should plan infrastructure for TML-Reporting in two ways if you choose to deploy the
TML-Reporting later, once the TML-cluster is up and active.

Reserve an Extra Node for TML-Reporting During Initial Cluster Creation

This way would require you to have an extra node in the TML-cluster which would be
used later to deploy TML-Reporting on it.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

10 | Infrastructure Planning, Sizing and Deployment

Add a Node Once TML-Cluster is Up and Running

You can use the platform's capabilities to add an extra node to the existing running
cluster to deploy TML-Reporting on it.

For TML-Reporting to be deployed with TML-cluster, then you must plan an extra node
to the required nodes for it to be deployed.

Note: You need to label the nodes once the cluster is up as mentioned in
Prerequisites for TML-Reporting deployment.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

11 | Prerequisites

Prerequisites
IMPORTANT!

Note the following considerations before deployment of Reporting Services.

For Kubernetes Cluster

Single Zone k8s Cluster

In order to deploy the Reporting pod/container, you will need a dedicated node, that is,
you must label one of the Kubernetes cluster nodes so that the Reporting pod/container
is deployed on that node only.

Multi-zone k8s Cluster

For any multi-zone's k8s deployment, you will need to label an extra node in the first
zone that is provided in the manifest. For example, in manifest "k8s_{aws|gcp|azure}_zones":
["us-east-1a","us-east-1c"], two zones are provided for deploying the cluster. You are
required to add a label to the node in first zone of the provided zones, that is "us-east-1a"

In order to label a node, use the following command for a Kubernetes cluster:

kubectl label nodes <nodename> node-name=reporting

This command labels <nodename> with "node-name=reporting".

The labeling of the node also ensures that none of the other TML cluster components
are deployed on that node. There are a few changes that are added to the deployment
scripts.

For Reporting Pod/Container

The following is the affinity rule added to the reporting-pod-0.yaml:

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

12 | Prerequisites

- matchExpressions:
- key: node-name
operator: In
values:
- reporting

For Other Pods/Containers

The following is the anti-affinity rule added for other pod/container yamls:

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-name
operator: NotIn
values:
- reporting

As viewed from the above affinity and anti-affinity rules, the deployment scripts make
sure that the Reporting pod/container is deployed on a single node labeled as "node-
name=reporting".

For Swarm Cluster

It is required to set REPORTING_HOST_NAME with the node value where Reporting
Services is to be deployed. (This has to be executed on Swarm Manager where the
deployment script will run.)

1. docker node ls
2. export REPORTING_HOST_NAME=<node_name>

It is required to make modifications in the pod yml files so that only Reporting Services is
deployed on the specified dedicated node.

a. The below placement rule needs to be added in tmgc-reporting.yml file.

deploy:
placement:
constraints:
- node.hostname == ${REPORTING_HOST_NAME}

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

13 | Prerequisites

b. The following files need to be modified to add below placement constraint along with other
constraints such that these containers do not run on reporting node.
1. tmgc-nosql.yml
2. tmgc-nosql-ring.yml
3. tmgc-sql.yml
4. tmgc-cache.yml
5. tmgc-log.yml
6. tmgc-tm.yml
7. tmgc-cm.yml

deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

e.g In tmgc-nosql.yml, tmgc-nosql-ring.yml, tmgc-sql.yml, tmgc-cache.yml, tmgc-log.yml after
adding above constraint deploy section would look like as below:
deploy:
placement:
constraints:
- node.hostname == ${HOST_NAME}
- node.hostname != ${REPORTING_HOST_NAME}

and in tmgc-tm.yml and tmgc-cm.yml after adding new constraint, deploy section would like as
below:
deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

14 | Installing the Reporting Services

Installing theReportingServices
To install the Reporting Service for Mashery CAM Local using Jenkins, complete the
following steps:

Procedure
1. Start the installer.

2. Log into http://<machine_ip_of_installer>:8080

3. Select Build and click build_docker job.

4. Select Build_with_Parameters, as shown below.

5. Build the Reporting Services image by clicking Build.

6. Push the image to your cloud repository, for example, to AWS, GCP, or Azure.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

15 | Deploying the Reporting Services

Deploying theReportingServices
Deployment of the Reporting Services can be done in several ways: either deployed
along with the TML-Cluster, deployed separately after the TML-Cluster is deployed, or a
quick-start deployment.

Note: It is required to provision a separate, dedicated node for Reporting
Services. Refer to Pre-requisites for details about node creation and
deployment configuration changes. Refer to the Customizing the User
Interface section for details on how to perform any customization with the user
content on Reporting Services.

l Deploying the Reporting Services along with TML-Cluster

l Deploying the Reporting Services Separately after TML-Cluster Deployment

l Quick Start Deployment

Deploying theReporting Services alongwith
TML-Cluster
Deploying the Reporting Services along with the TML-Cluster requires you to
preconfigure an extra node in the Kubernetes or Swarm cluster to host the Reporting
Services (TML-Reporting) pod/container.

Note: Refer to Infrastructure Planning, Sizing and Deployment section and
Prerequisites section.

Perform the following steps to bring the Reporting Services container along with other
containers in the TML-Cluster when you are modifying the manifest for TML-Cluster
deployment. TML-Reporting would be deployed only after all the other containers are
successfully deployed using the create-tml-cluster.sh script located in the manifest
folder.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

16 | Deploying the Reporting Services

Note: Before deploying the Reporting Services, also refer to other deployment
steps mentioned in the Boomi Cloud API Management - Local Edition
Installation and Configuration Guide for your specific deployment.

On GCP Kubernetes

1. Modify the manifest file located at docker-deploy/gcp/k8s/.

2. Set "tml_reporting_enabled" : "true" in the manifest file.

3. After Kubernetes cluster is created, label one node with label "node-
name=reporting" so that tml-reporting pod is deployed on that node.

On AWS Kubernetes

1. Modify the manifest file located at docker-deploy/aws/k8s/.

2. Set "tml_reporting_enabled" : "true" in the manifest file.

3. After Kubernetes cluster is created, label one node with label "node-
name=reporting" so that tml-reporting pod is deployed on that node.

On AWS EKS

1. Modify the manifest file located at docker-deploy/aws/k8s/.

2. Set "tml_reporting_enabled" : "true" in the manifest file.

3. After Kubernetes cluster is created, label one node with label "node-
name=reporting" so that tml-reporting pod is deployed on that node.

On Azure Kubernetes

1. Modify the manifest file located at docker-deploy/azure/k8s/.

2. Set "tml_reporting_enabled" : "true" in the manifest file.

3. After Kubernetes cluster is created, label one node with label "node-
name=reporting" so that tml-reporting pod is deployed on that node.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

17 | Deploying the Reporting Services

On Azure OpenShift

1. Modify the manifest file located at docker-deploy/azure/openshift/.

2. Set "tml_reporting_enabled" : "true" in the manifest file.

3. After Kubernetes cluster is created, label one node with label "node-
name=reporting" so that tml-reporting pod is deployed on that node.

On OnPrem Kubernetes

1. Modify the manifest file located at docker-deploy/onprem/k8s/.

2. Set "tml_reporting_enabled" : "true" in the manifest file.

3. After Kubernetes cluster is created, label one node with label "node-
name=reporting" so that tml-reporting pod is deployed on that node.

On Swarm Bare Metal

1. Modify the manifest file located at docker-deploy/onprem/swarm/.

2. Set "tml_reporting_enabled" : "true" in the manifest file.

3. Export REPORTING_HOSTNAME="{dedicated_reporting_node_name}" on swarm
manager node.

Get the node details on swarm manager by running this command:

docker node ls

4. Select the node name and export the following variable:

export REPORTING_HOST_NAME=<node_name>

5. Modify the tmgc-reporting.yml located at docker-deploy/onprem/swarm/manifest-onprem-
swarm folder to place the reporting pod on specific host by modifying the placement
constraint.

deploy:
placement:
constraints:
- node.hostname == ${REPORTING_HOST_NAME}

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

18 | Deploying the Reporting Services

6. In order to restrict the other containers/pods to not run on node which is dedicated
for reporting container, all the following pod yml files located at docker-
deploy/onprem/swarm/manifest-onprem-swarm need to be modified:

1. tmgc-nosql.yml
2. tmgc-nosql-ring.yml
3. tmgc-sql.yml
4. tmgc-cache.yml
5. tmgc-log.yml
6. tmgc-tm.yml
7. tmgc-cm.yml

The above files need to be modified to add below placement constraint along with other
constraints such that these containers do not run on reporting node.

deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

e.g In tmgc-nosql.yml, tmgc-nosql-ring.yml, tmgc-sql.yml, tmgc-cache.yml, tmgc-log.yml
after adding above constraint deploy section would look like as below:
deploy:
placement:
constraints:
- node.hostname == ${HOST_NAME}
- node.hostname != ${REPORTING_HOST_NAME}

and in tmgc-tm.yml and tmgc-cm.yml after adding new constraint, deploy section would like
as below:
deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

On Swarm Virtual Box

1. Modify the manifest file located at docker-deploy/onprem/swarm/.

2. Set "tml_reporting_enabled" : "true" in the manifest file.

3. Export REPORTING_HOSTNAME="{dedicated_reporting_node_name}" on swarm
manager node.

Get the node details on swarm manager by running this command:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

19 | Deploying the Reporting Services

docker node ls

4. Select the node name and export the following variable:

export REPORTING_HOST_NAME=<node_name>

5. Modify the tmgc-reporting.yml located at docker-deploy/onprem/swarm/manifest-onprem-
swarm folder to place the reporting pod on specific host by modifying the placement
constraint.

deploy:
placement:
constraints:
- node.hostname == ${REPORTING_HOST_NAME}

6. In order to restrict the other containers/pods to not run on node which is dedicated
for reporting container, all the following pod yml files located at docker-
deploy/onprem/swarm/manifest-onprem-swarm need to be modified:

1. tmgc-nosql.yml
2. tmgc-nosql-ring.yml
3. tmgc-sql.yml
4. tmgc-cache.yml
5. tmgc-log.yml
6. tmgc-tm.yml
7. tmgc-cm.yml

The above files need to be modified to add below placement constraint along with other
constraints such that these containers do not run on reporting node.

deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

e.g In tmgc-nosql.yml, tmgc-nosql-ring.yml, tmgc-sql.yml, tmgc-cache.yml, tmgc-log.yml
after adding above constraint deploy section would look like as below:
deploy:
placement:
constraints:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

20 | Deploying the Reporting Services

- node.hostname == ${HOST_NAME}
- node.hostname != ${REPORTING_HOST_NAME}

and in tmgc-tm.yml and tmgc-cm.yml after adding new constraint, deploy section would like
as below:
deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

On AWS Swarm

1. Login to docker swarm manager ec2 node.

2. Modify the manifest file present at docker-deploy/aws/swarm

3. Set "tml_reporting_enabled" : "true" in the manifest file.

4. Export REPORTING_HOSTNAME="{dedicated_reporting_node_name}" on swarm
manager node.

Get the node details on swarm manager by running this command:

docker node ls

5. Select the node name and export the following variable:

export REPORTING_HOST_NAME=<node_name>

6. Modify the tmgc-reporting.yml located at docker-deploy/aws/swarm/manifest-aws-swarm
folder to place the reporting pod on specific host by modifying the placement
constraint.

deploy:
placement:
constraints:
- node.hostname == ${REPORTING_HOST_NAME}

7. In order to restrict the other containers/pods to not run on node which is dedicated
for reporting container, all the following pod yml files located at docker-
deploy/aws/swarm/manifest-aws-swarm need to be modified:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

21 | Deploying the Reporting Services

1. tmgc-nosql.yml
2. tmgc-nosql-ring.yml
3. tmgc-sql.yml
4. tmgc-cache.yml
5. tmgc-log.yml
6. tmgc-tm.yml
7. tmgc-cm.yml

The above files need to be modified to add below placement constraint along with other
constraints such that these containers do not run on reporting node.

deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

e.g In tmgc-nosql.yml, tmgc-nosql-ring.yml, tmgc-sql.yml, tmgc-cache.yml, tmgc-log.yml
after adding above constraint deploy section would look like as below:
deploy:
placement:
constraints:
- node.hostname == ${HOST_NAME}
- node.hostname != ${REPORTING_HOST_NAME}

and in tmgc-tm.yml and tmgc-cm.yml after adding new constraint, deploy section would like
as below:
deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

On Azure Swarm

1. Login to docker swarm manager azure node.

2. Modify the manifest file present at docker-deploy/azure/swarm

3. Set "tml_reporting_enabled" : "true" in the manifest file.

4. Export REPORTING_HOSTNAME="{dedicated_reporting_node_name}" on swarm
manager node.

Get the node details on swarm manager by running this command:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

22 | Deploying the Reporting Services

docker node ls

5. Select the node name and export the following variable:

export REPORTING_HOST_NAME=<node_name>

6. Modify the tmgc-reporting.yml located at docker-deploy/azure/swarm/manifest-azure-
swarm folder to place the reporting pod on specific host by modifying the placement
constraint.

deploy:
placement:
constraints:
- node.hostname == ${REPORTING_HOST_NAME}

7. In order to restrict the other containers/pods to not run on node which is dedicated
for reporting container, all the following pod yml files located at docker-
deploy/azure/swarm/manifest-azure-swarm need to be modified:

1. tmgc-nosql.yml
2. tmgc-nosql-ring.yml
3. tmgc-sql.yml
4. tmgc-cache.yml
5. tmgc-log.yml
6. tmgc-tm.yml
7. tmgc-cm.yml

The above files need to be modified to add below placement constraint along with other
constraints such that these containers do not run on reporting node.

deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

e.g In tmgc-nosql.yml, tmgc-nosql-ring.yml, tmgc-sql.yml, tmgc-cache.yml, tmgc-log.yml
after adding above constraint deploy section would look like as below:
deploy:
placement:
constraints:
- node.hostname == ${HOST_NAME}

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

23 | Deploying the Reporting Services

- node.hostname != ${REPORTING_HOST_NAME}

and in tmgc-tm.yml and tmgc-cm.yml after adding new constraint, deploy section would like
as below:
deploy:
placement:
constraints:
- node.hostname != ${REPORTING_HOST_NAME}

Deploying theReporting Services Separately
after TML-Cluster Deployment
This deployment option enables you to deploy the Reporting Services (TML-Reporting)
after the TML-Cluster is up and active, so that you can start seeing the reports after
deploying and configuring the Reporting Services. This requires changes on cluster level
for reserving a node for the Reporting Services container/pod. It is also required to
modify the other pod yml files for deployment or scheduling constraint before deploying
the TML-Cluster.

Note: Deployment or scheduling constraints in Kubernetes and placement
constraints in Swarm need to be done well before deployment of the TML-
Cluster if you want to deploy the Reporting Services after the TML-Cluster
becomes active.

On Kubernetes/OpenShift

1. Once the TML-Cluster is up and is in active state, deploy the reporting
pod/container on a dedicated node.

2. Label one node with label "node-name=reporting" after provisioning it (the node
can be added along with TML-Cluster infra provisioning or can be added to
existing cluster) so that the TML-Reporting pod can be deployed on that node.

3. Run the script deploy-reporting-pod.sh located at docker-deploy/kubernetes/manifest
folder to deploy the TML-Reporting pod and service.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

24 | Deploying the Reporting Services

DeployingMultiple Reporting Services
The following section describes how to deploy multiple reporting services across
multiple zones.

To deploy TML-Reporting across two zones:

1. Modify the manifest file and enable reporting tml_reporting_enabled=true.

2. Create a Kubernetes multi-zone cluster.

3. Label TWO nodes (one from each zones) as kubectl label node <node> node-
name=reporting.

4. Update manifest.yaml with multi-zone details and run compose.sh.

5. Create TML cluster.

With current deployment script after the above step, tml-reporting service and pod would
be deployed in zone 1.

6. Run the following command to deploy second tml-reporting service and pod:

source set-reporting-svc.sh "zone-2"

source deploy-reporting-pod.sh "zone-2"

7. Log in to all CM pods in both zones and import sample configuration:

cm import config --componentType logservice --file /home/builder/reporting-property.json

Example reporting-property.json for configuring two reporting pods:

{
"td_agent_container_output_channelType" : "FORWARD",
"td_agent_verbose_output_channelType" : "FORWARD",
"td_agent_metric_output_channelType" : "FORWARD",
"td_agent_output_channelType" : "FORWARD",
"td_agent_out_forward_servers" : "reporting-set-0-0.reporting-svc-
0.default.svc.cluster.local:24224,reporting-set-1-0.reporting-svc-
1.default.svc.cluster.local:24224",
"td_agent_out_metric_forward_servers" : "reporting-set-0-0.reporting-svc-
0.default.svc.cluster.local:24225,reporting-set-1-0.reporting-svc-
1.default.svc.cluster.local:24225",
"td_agent_out_container_forward_servers" : "reporting-set-0-0.reporting-svc-

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

25 | Deploying the Reporting Services

0.default.svc.cluster.local:24226,reporting-set-1-0.reporting-svc-
1.default.svc.cluster.local:24226",
"td_agent_out_verbose_forward_servers" : "reporting-set-0-0.reporting-svc-
0.default.svc.cluster.local:24227,reporting-set-1-0.reporting-svc-
1.default.svc.cluster.local:24227"
}

Quick Start Deployment
This mode of deployment always has the property "tml_reporting_enabled" set to "true" by
default. The TML-Reporting container would be deployed after the TML-cluster becomes
active. This requires you to use the existing command to build and deploy the TML-
cluster which would bring up the TML-Reporting and would be configured to send data to
it.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

26 | Configuring Clusters

ConfiguringClusters
The following section explains how to configure the cluster for your specific deployment.

Kubernetes Cluster

On K8S Cluster:

1. Get the service name using the command:

kubectl get svc

2. Get the reporting service name and form below complete service url.

The Reporting service DNS name is based on the zone and namespace in which
the reporting pod is deployed. It should be in the following format:

<pod-name>.<reporting-svc-name>.<namespace>.svc.<domain-name>

For example, if the reporting pod is deployed in "tml540" namespace and domain
name for your cluster is "cluster.local" and reporting pod would always be
deployed in first zone, so the pod name and service name are going to be reporting-
set-0-0 and reporting-svc-0 repectively, then reporting service DNS would be:
reporting-set-0-0.reporting-svc-0.tml540.svc.cluster.local

3. Verify that the above URL is reachable from the CM pod in each zone. For
example:

ping reporting-set-0-0.reporting-svc-0.tml540.svc.cluster.local

4. Follow these additional sub-steps:

a. List the running pods using the command:

kubectl get pods

b. Connect to the tml-cm pod using the command:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

27 | Configuring Clusters

kubectl exec -it {tml-cm-pod-name} bash

c. Prepare the reporting-property.json file at /home/builder location with the
following content:

{
"td_agent_container_output_channelType" : "FORWARD",
"td_agent_metric_output_channelType" : "FORWARD",
"td_agent_verbose_output_channelType" : "FORWARD",
"td_agent_output_channelType" : "FORWARD",
"td_agent_out_forward_servers" : "<Reporting service name>:24224",
"td_agent_out_metric_forward_servers" : "<Reporting service name>:24225",
"td_agent_out_container_forward_servers" : "<Reporting service name>:24226",
"td_agent_out_verbose_forward_servers" : "<Reporting service name>:24227"
}

d. Configure the tml-log service to send data to the tml-reporting pod using the
command:

cm import config --componentType logservice --file /home/builder/reporting-
property.json

5. You should see the log service geting reconfigured as shown below:

cm import config --componentType logservice --file /home/builder/reporting.json
Using cluster [clustername]
Using Zone [us-east-1c]
Component ID Type Name Status
Last Heartbeat Received Host Service Port(s)
------------------------------------- --------------- --
-- --------------- --------------------------- --------------- ---------------------------
8c425111-eb3f-4964-86dc-60f145f43790 logservice log-set-1-0.log-svc-
1.default.svc.cluster.local ACTIVE Feb 09 2021 04:48:24 +0000
192.168.35.203 24224
a8458d2b-69d3-40c4-9c65-d58ef2932a8a logservice log-set-1-1.log-svc-
1.default.svc.cluster.local ACTIVE Feb 09 2021 04:48:16 +0000
192.168.33.82 24224
Updating the TMGC after the change
Successfully updated the TMGC component 8c425111-eb3f-4964-86dc-60f145f43790 for
components of type logservice
Updating the TMGC after the change
Successfully updated the TMGC component a8458d2b-69d3-40c4-9c65-d58ef2932a8a for

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

28 | Configuring Clusters

components of type logservice
Successfully imported configuration properties for the scope map[zone:us-east-1c] for
components of type logservice

Swarm Cluster

On Swarm Cluster:

1. Get the IP of reporting container using the command: For example, in our default
confguration, overlay network would be ml5:

docker inspect {reporting_container_name} | yq ".[0].NetworkSettings.Networks.${overlay_
network}.IPAMConfig.IPv4Address" | tr -d '"'

docker inspect {reporting_container_name} | yq ".
[0].NetworkSettings.Networks.ml5.IPAMConfig.IPv4Address" | tr -d '"'

2. Connect to tml-cm container:

a. List the running containers:

docker ps

b. Connect to tml-cm container:

docker exec -it {tml-cm-container-name} bash

c. Prepare the reporting-property.json file at /home/builder location with the
following content:

{
"td_agent_container_output_channelType" : "FORWARD",
"td_agent_metric_output_channelType" : "FORWARD",
"td_agent_verbose_output_channelType" : "FORWARD",
"td_agent_output_channelType" : "FORWARD",
"td_agent_out_forward_servers" : "<Reporting_container_ip>:24224",
"td_agent_out_metric_forward_servers" : "<Reporting_container_ip>:24225",
"td_agent_out_container_forward_servers" : "<Reporting_container_ip>:24226",
"td_agent_out_verbose_forward_servers" : "<Reporting_container_ip>:24227"
}

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

29 | Configuring Clusters

d. Configure the tml-log service to send data to the tml-reporting pod:

cm import config --componentType logservice --file /home/builder/reporting-
property.json

3. You should see the log service getting reconfigured as shown below:

cm import config --componentType logservice --file /home/builder/reporting.json
Using cluster [clustername]
Using Zone [us-east-1c]
Component ID Type Name Status
Last Heartbeat Received Host Service Port(s)
------------------------------------- --------------- --
-- --------------- --------------------------- --------------- ---------------------------
8c425111-eb3f-4964-86dc-60f145f43790 logservice log-set-1-0.log-svc-
1.default.svc.cluster.local ACTIVE Feb 09 2021 04:48:24 +0000
192.168.35.203 24224
a8458d2b-69d3-40c4-9c65-d58ef2932a8a logservice log-set-1-1.log-svc-
1.default.svc.cluster.local ACTIVE Feb 09 2021 04:48:16 +0000
192.168.33.82 24224
Updating the TMGC after the change
Successfully updated the TMGC component 8c425111-eb3f-4964-86dc-60f145f43790 for
components of type logservice
Updating the TMGC after the change
Successfully updated the TMGC component a8458d2b-69d3-40c4-9c65-d58ef2932a8a for
components of type logservice
Successfully imported configuration properties for the scope map[zone:us-east-1c] for
components of type logservice

On OpenShift Cluster

1. Get the service name using the command:

oc get svc

2. Get the Reporting Services name and fully formed qualified service URL.

The Reporting Services DNS name is based on the zone and namespace in which
the reporting pod is deployed. It should be in the following format:

<pod-name>.<reporting-svc-name>.<namespace>.svc.<domain-name>

For example, if the reporting pod is deployed in "tml540" namespace (it can be

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

30 | Configuring Clusters

project name) and domain name for your cluster is "cluster.local" and reporting pod
would always be deployed in first zone, so the pod name and service name are
going to be reporting-set-0-0 and reporting-svc-0 repectively, then the Reporting Service
DNS would be: reporting-set-0-0.reporting-svc-0.tml540.svc.cluster.local.

3. Verify that the above service URL is reachable from the CM pod in each zone:. For
example:

ping reporting-set-0-0.reporting-svc-0.tml540.svc.cluster.local

4. Follow these additional sub-steps:

a. List the running pods using the command:

oc get pods

b. Connect to tml-pod using the command:

oc exec -it {tml-cm-pod-name} bash

c. Prepare the reporting-property.json file at /home/builder location with the
following content:

{
"td_agent_container_output_channelType" : "FORWARD",
"td_agent_metric_output_channelType" : "FORWARD",
"td_agent_verbose_output_channelType" : "FORWARD",
"td_agent_output_channelType" : "FORWARD",
"td_agent_out_forward_servers" : "<Reporting_service_name>:24224",
"td_agent_out_metric_forward_servers" : "<Reporting_service_name>:24225",
"td_agent_out_container_forward_servers" : "<Reporting_service_name>:24226",
"td_agent_out_verbose_forward_servers" : "<Reporting_service_name>:24227"
}

d. Configure the tml-log service to send data to the tml-reporting pod:

cm import config --componentType logservice --file /home/builder/reporting-
property.json

5. You should see the log service getting reconfigured as shown below:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

31 | Configuring Clusters

cm import config --componentType logservice --file /home/builder/reporting.json
Using cluster [clustername]
Using Zone [us-east-1c]
Component ID Type Name Status
Last Heartbeat Received Host Service Port(s)
------------------------------------- --------------- --
-- --------------- --------------------------- --------------- ---------------------------
8c425111-eb3f-4964-86dc-60f145f43790 logservice log-set-1-0.log-svc-
1.default.svc.cluster.local ACTIVE Feb 09 2021 04:48:24 +0000
192.168.35.203 24224
a8458d2b-69d3-40c4-9c65-d58ef2932a8a logservice log-set-1-1.log-svc-
1.default.svc.cluster.local ACTIVE Feb 09 2021 04:48:16 +0000
192.168.33.82 24224
Updating the TMGC after the change
Successfully updated the TMGC component 8c425111-eb3f-4964-86dc-60f145f43790 for
components of type logservice
Updating the TMGC after the change
Successfully updated the TMGC component a8458d2b-69d3-40c4-9c65-d58ef2932a8a for
components of type logservice
Successfully imported configuration properties for the scope map[zone:us-east-1c] for
components of type logservice

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

32 | Customizing the User Interface

Customizing theUser Interface
You can deploy the Reporting Services container/pod with a modified configuration
instead of the default one. This configuration includes the configuration files for Grafana,
Fluentd, Loki and Prometheus services. It also includes user-defined reporting
dashboards that need to be uploaded during the pod deployment.

Related Topics
l Grafana Dashboards

l Fluentd Configuration

l Loki Configuration

l Prometheus Configuration

l TML-Reporting Configuration

GrafanaDashboards
You can create your own dashboards in Grafana and then save them to any version
control repository. These custom dashboards can be uploaded to the tml-reporting
container when it is deployed. For this, you need to place the dashboards at following
location, in the respective manifest folder created during the deployment steps.

For Kubernetes
docker-deploy/{gcp|aws|azure|openshift|onprem}/k8s/{manifest_folder}/resources/tml-
reporting/grafana/dashboards/CustomDashboards

For Swarm
docker-deploye/{azure|aws|onprem}/swarm/{manifest_folder}/resources/tml-
reporting/grafana/dashboards/CustomDashboards

Boomi Cloud API Management provided dashboards can be placed at the following
location:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

33 | Customizing the User Interface

For Kubernetes
docker-deploy/{gcp|aws|azure|openshift|onprem}/k8s/{manifest_folder}/resources/tml-
reporting/grafana/dashboards/MasheryReporting/{operations|summary}

For Swarm
docker-deploye/{azure|aws|onprem}/swarm/{manifest_folder}/resources/tml-
reporting/grafana/dashboards/MasheryReporting/{operations|summary}

Dashboards uploaded in the above resource path during deployment are editable from
the Grafana UI. Managing Grafana dashboards are covered in detail in the Managing
Dashboards section.

Fluentd Configuration
You can add new configurations or plugins to the existing set by placing them at
following location while deploying the tml-reporting container.

For Configurations

Kubernetes

docker-deploy/{gcp|aws|azure|openshift|onprem}/k8s/{manifest_folder}/resources/tml-reporting/fluentd/conf

Swarm

docker-deploy/{aws|azure|onprem}/swarm/{manifest_folder}/resources/tml-reporting/fluentd/conf

For Plug-ins

Kubernetes

docker-deploy/{gcp|aws|azure|openshift|onprem}/k8s/{manifest_folder}/resources/tml-
reporting/fluentd/plugin

Swarm

docker-deploy/{aws|azure|onprem}/swarm/{manifest_folder}/resources/tml-reporting/fluentd/plugin

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

34 | Customizing the User Interface

Loki Configuration
You can modify the Loki service's configurations by placing it at the following location
while deploying the tml-reporting container.

Kubernetes
docker-deploy/{gcp|aws|azure|openshift|onprem}/k8s/{manifest_folder}/resources/tml-reporting/loki

Swarm
docker-deploy/{aws|azure|onprem}/swarm/{manifest_folder}/resources/tml-reporting/loki

PrometheusConfiguration
You can modify the Prometheus configuration and add alerting configuration by placing
them at the following location while deploying the tml-reporting container.

Kubernetes
docker-deploy/{gcp|aws|azure|openshift|onprem}/k8s/{manifest_folder}/resources/tml-reporting/prometheus

Swarm
docker-deploy/{aws|azure|onprem}/swarm/{manifest_folder}/resources/tml-reporting/prometheus

TML-ReportingConfiguration
Configuration related to retention for Prometheus data, cleanup of Prometheus data,
metrics collection interval for tml-reporting is configurable and can be placed at the
following location while deploying the tml-reporting container.

Kubernetes

docker-deploy/{gcp|aws|azure|openshift|onprem}/k8s/{manifest_folder}/resources/tml-reporting

Swarm

docker-deploy/{aws|azure|onprem}/swarm/{manifest_folder}/resources/tml-reporting

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

35 | Verification

Verification
To verify that the TML Reporting container is configured properly, run the following
command to get the Reporting Service:

kubectl get svc

This lists all the services and external IPs of the load balancer. Select the load balancer
IP of the reporting app named "reporting-app-0" and access the Grafana dashboard:
http://<External_Ip_Of_Loadbalancer_Of_ReportingApp>:3000.

Enter the Username and Password.

Username : masheryadmin
Password : Ap1Us3rPasswd

Verifying the TML Reporting Configuration

To verify the TML Reporting configuration:

1. Login to the TML Reporting Grafana and navigate to any of the TML pod
Dashboards, for example CM, Log, TM, NoSQL, SQL or Cache.

2. Verify that charts are populated for all the containers that are present in that
specific TML pod Dashboard. For example, if you are viewing the dashboard for
TML TM, verify that all the charts, Process Status, Process Uptime, CPU
Utilization and memory Utilization are populated and have data in them.

3. Also verify that all the pods for a specific TML component are visible on TOP LEFT
corner drop down. For example, if you are viewing the dashboard for TML TM,
verify that all the pods are listed in the TM_HOST drop down at the TOP LEFT
corner of the dashboard. Also navigate to another TML TM pod and verify that
chars are populated for other TML TM pods

4. After creation of a few APIs on the TML Cluster, hit those APIs and you can verify
the data on the Customer Summary Dashboard.

5. Enable Verbose Logging on the TML Cluster and verify that Verbose logs are
available on the TML Verbose Logs Dashboard

If all the verification points mentioned above pass, then the configuration of TML

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

36 | Verification

Reporting pod with the remaining cluster is successful.

Verifying the Health of TML Reporting Pod/Container

To verify the health of the TML Reporting pod or container:

1. Login to the TML Reporting Grafana and navigate to the TML Reporting
Dashboard.

2. Verify that all the charts, Process Status, Process Uptime, CPU Utilization and
Memory Utilization are populated and have data in them for the TML Reporting
Dashboard.

If all the verification points mentioned above Pass, then the TML Reporting
Pod/Container is healthy.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

37 | Accessing Grafana Dashboards and Reports

AccessingGrafanaDashboards and
Reports

Accessing Grafana

For Kubernetes/Openshift

If you are using Kubernetes or Openshift, you will need to find out the external IP
address of the reporting application/container using the following steps.

For Kubernetes Cluster

1. Run:

kubectl get svc

This lists all the services and external IPs of load balancer. Select the load
balancer IP of the reporting app named "reporting-app-0".

2. Access the Grafana dashboard:

http://<External_Ip_Of_Loadbalancer_Of_ReportingApp>:3000

3. Enter the admin login details.

Note: If you want to deploy tml-reporting pod with a different username and
password the first time, you will need to have customized the grafan.ini file as
explained in the User Content Customization section.

For OpenShift Cluster

1. Run:

oc get svc

This lists all the services and external IPs of load balancer. Select the load
balancer IP of the reporting app named "reporting-app-0".

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

38 | Accessing Grafana Dashboards and Reports

2. Access the Grafana dashboard:

http://<External_Ip_Of_Loadbalancer_Of_ReportingApp>:3000

3. Enter the admin login details.

For Swarm

For Swarm, you will need to use the Docker Swarm master's IP address for access the
Grafana dashboard:

1. Access the Grafana dashboard using Swarm master's public IP:

http://<SWARM_MASTER_IP>:3000

2. Enter the admin login details.

Changing the Default Password

1. After logging into Grafana, you can change the default password.

2. Select Change Your Password.

3. Change the password as required.

This password is stored in the local database maintained at mounted volume. So if you
undeploy and deploy the tml-reporting pod/container, the changed password would still
remain. If you delete the volume, then the password would be the default password.

ManagingUsers andRoles
The masheryadmin user can create users and assign roles according to their needs.

1. Login to Grafana dashboard as the masheryadmin user.

2. Navigate to Server Admin Shield on the left panel:

3. Follow the Grafana documentation for instructions on creating and adding a new
user.

4. Assign Roles (Permissions) as described in the Grafana documentation on
Permissions.

https://grafana.com/docs/grafana/v7.0/manage-users/
https://grafana.com/docs/grafana/v7.0/manage-users/
https://grafana.com/docs/grafana/v7.0/permissions/

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

39 | Accessing Grafana Dashboards and Reports

ManagingDashboards

Out of Box Reports

Boomi Cloud API Management provides out the box reports/dashboards designed to
cover the operational and traffic usage of the tml-cluser. When you sign into the Grafana
dashboard, you will see the following landing page.
Click on the Dashboard icon on the left panel, then click Manage.

You will see the page where different folders are listed. These folders contain the
dasboards as per the headings given. Boomi Cloud API Management provides the out of
box reports/dashboards under MasheryReportingOperations and
MasheryReportingSummary folders. There is another folder named
CustomDashboards which would host any dashboards you provide during the
deployment.

MasheryReportingOperations
l Customer Traffic Detail Reports

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

40 | Accessing Grafana Dashboards and Reports

l TML Cache Metrics

l TML CM Metrics

l TML Log Metrics

l TML NoSQL Metrics

l TML Reporting Metrics

l TML SQL Metrics

l TML TM Metrics

l TML Verbose Logs

l TML Container Logs

o TML SQL Container Logs

o TML NoSQL Container Logs

o TML TM Container Logs

o TML CM Container Logs

o TML Log Container Logs

o TML Cache Container Logs

MasheryReportingSummary
l Customer Traffic Summary

You can click on any dashboard to view the different charts. Once you view any
dashboard, then it would also appear on the Grafana home page under Recently
viewed dashboards.

Note: You would not be able to save any modifcations to Boomi Cloud API
Management provided out of box dashboards. To make any changes to
dashboards, make a copy of it and save it with another name. The copy of the
original dashboard allows you to modify the charts and queries.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

41 | Accessing Grafana Dashboards and Reports

Customer Traffic Detail Reports
The Customer Traffic Detail Reports page displays charts and graphs based on traffic
rate handled by each traffic manager, services, packages, and response code. This
gives insight into the health of traffic serviced by the tml-cluster so that you can get
details about the usage of each service and package. You also get details on the rate of
successful calls per package, service, and traffic manager.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

42 | Accessing Grafana Dashboards and Reports

Traffic QPS

The Traffic QPS graph displays the rate of traffic handled per second calculated over a
bucket of 5 minutes. Data points are plotted at an interval of 60 seconds. This graph

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

43 | Accessing Grafana Dashboards and Reports

gives the overall traffic handled in the tml-cluster so that you can monitor the traffic QPS
for the time selected on the dashboard.

Features

l Provides the current traffic rate with minimum 5 minute interval.

l Data can be retrieved by day, week, and month.

Traffic Based On Status Code

This Traffic Based on Status Code graph displays the rate of traffic based on the
reponse/status code of the calls. Status codes are categorized in three categories:

l Successful: This displays the rate of traffic call per second for the status code 200
over a bucket of 5 minutes.

l Blocked: This displays the rate of traffic call per second for the status code ranging
from 400 to 499 over a bucket of 5 minutes.

l Others: This displays the rate of traffic call per second for the status code other
than the above two conditions over a bucket of 5 minutes.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

44 | Accessing Grafana Dashboards and Reports

596 Calls

The 596 Calls graph displays the rate of traffic calls with status code 596 over a bucket
of 5 minute. It represent the traffic calls for response SERVICE_NOT_FOUND that means
either service is unknown or cache have not loaded them.

Traffic based on Service

The Traffic based on Service graph displays the rate of traffic calls based on selection
of service from the drop down present at the top left corner over a bucket of 5 minutes.
This graph requires you to select the service so that graph displays the rate of selected
service. This graph divides the traffic into the following three categories and each
category's rate is displayed based on selection of service.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

45 | Accessing Grafana Dashboards and Reports

l Successful: This displays the rate of traffic call per second for the status code 200
over a bucket of 5 minutes.

l Blocked: This displays the rate of traffic call per second for the status code ranging
from 400 to 499 over a bucket of 5 minutes.

l Others: This displays the rate of traffic call per second for the status code other
than the above two conditions over a bucket of 5 minutes.

Traffic based on Package

The Traffic based on Package graph displays the rate of traffic calls based on selection
of package from the drop down (located at the top left corner) over a bucket of 5
minutes. This graph requires you to select the package so that graph displays the rate of
selected package. This graph divides the traffic into the following three categories and
each category's rate is displayed based on selection of package.

l Successful: This displays the rate of traffic call per second for the status code 200
over a bucket of 5 minutes.

l Blocked: This displays the rate of traffic call per second for the status code ranging
from 400 to 499 over a bucket of 5 minutes.

l Others: This displays the rate of traffic call per second for the status code other
than the above two conditions over a bucket of 5 minutes.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

46 | Accessing Grafana Dashboards and Reports

Successful Traffic based on Traffic Manager Host

The Successful Traffic based On Traffic Manager Host graph displays the rate of
successful traffic calls (for example, traffic call with status code 200) per tml-tm
pod/container over a bucket of 5 minutes. This helps identify the load pattern across the
tml-tm component and also identifies any traffic manager that is having trouble serving
traffic.

Unsuccessful Traffic based On Traffic Manager Host

The Unsuccessful Traffic based On Traffic Manager Host graph displays the rate of
unsuccessful traffic calls (for example, traffic call with status code other than 200) per
tml-tm pod/container over a bucket of 5 minutes. This helps identify any traffic manager

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

47 | Accessing Grafana Dashboards and Reports

processing a large number of unsuccessful calls.

TMLCacheMetrics
The TML Cache Metrics page displays the CPU, memory and status of processes
running on the cache pod/container. This page displays memory utilization of service
and percentage usage against the node's memory. This page also shows the age of
different processes on the pod/container. You can select the time range from the top
right corner for which data has to be checked. This page requires you to select the pod

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

48 | Accessing Grafana Dashboards and Reports

name from the drop down list to see the metrics of that pod/container of type tml-cache.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

49 | Accessing Grafana Dashboards and Reports

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

50 | Accessing Grafana Dashboards and Reports

Process Status

The Process Status panel displays the status of all the different processes running on
the tml-cache container/pod. If the process is running properly, then this is displayed by
green upward arrow. If the process is not alive then that process's status is displayed as
red downward arrow. This status is plotted at an interval of 1 minute since the metrics
collection interval is 1 minute.

Process Uptime

The Process Uptime panel displays the length of time of all the different processes
running on the tml-cache container/pod. This can be used to monitor if the uptime of the
process is the same as the pod's uptime or if it is getting restarted.

CPU Usage(%)

The CPU Usage(%) displays the CPU used in terms of percentage. This are direct
representations of percentage usage per core as shown when you run the top command
on any linux system. It doesn't average out the CPU usage against all the cores present
on the box since you would see usage more than 100%. This panel displays the
aggregated CPU usage by all the processes and CPU usage by an individual process.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

51 | Accessing Grafana Dashboards and Reports

Memory Usage

The Memory Usage panel displays the memory used by the individual processes and
aggregated memory usage on the tml-cache pod/container. This panel also the displays
the memory used in terms of percenatge of the total memory of node on which the
pod/container is running.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

52 | Accessing Grafana Dashboards and Reports

TMLCMMetrics
The TML CM Metrics page displays the CPU, memory and status of processes running
on the tml-cm pod/container. This page displays memory utilization of the service and
percentage usage against the node's memory. This page also shows the age of different
processes on the pod/container. You can select the time range from the top right corner
for which data has to be checked. This page requires you to select the pod name from

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

53 | Accessing Grafana Dashboards and Reports

the drop down to see the metrics of that pod/container of type tml-cm.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

54 | Accessing Grafana Dashboards and Reports

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

55 | Accessing Grafana Dashboards and Reports

Process Status

The Process Status panel displays the status of all the different processes running on
the tml-cm container/pod. If the process is running properly then this is displayed by a
green upward arrow. If process is not alive then that process's status is displayed as a
red downward arrow. This status is plotted at an interval of 1 minute since the metrics
collection interval is 1 minute.

Process Uptime

The Process Uptime panel displays the age of all the different processes running on the
tml-cm container/pod. This can be used to monitor if the age of the process is same as
pod's age or if it is getting restarted.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

56 | Accessing Grafana Dashboards and Reports

CPU Usage(%)

The CPU Usage(%) panel displays the CPU used in terms of percentage. These are
direct representations of percentage usage per core as shown when you run the top
command on any linux system. It doesn't average out the CPU usage against all the
cores present on the box since the user would see usage more than 100%. This panel
displays the aggregated CPU usage by all the processes and CPU usage by an
individual process.

Memory Usage

The Memory Usage displays the memory used by the individual processes and
aggregated memory usage on the tml-cm pod/container. This panel also the displays the
memory used in terms of the percentage of the total memory of the node on which the
pod/container is running.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

57 | Accessing Grafana Dashboards and Reports

TML LogsMetrics
The TML Log Metrics page displays the CPU, memory, and status of processes running
on the tml-log pod/container. This page displays memory utilization of the service and
percentage usage against the node's memory. This page also shows the age of different
processes on the pod/container. You can select the time range from the top right corner
for which data has to be checked. This page requires you to select the pod name from
the drop down to see the metrics of that pod/container of type tml-log.

Process Status

The Process Status panel displays the status of all the different processes running on
the tml-log container/pod. If the process is running properly then this is displayed by a
green upward arrow. If the process is not alive then that process's status is displayed as
a red downward arrow. This status is plotted at an interval of 1 minute since the metrics

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

58 | Accessing Grafana Dashboards and Reports

collection interval is 1 minute.

Process Uptime

The Process Uptime panel displays the age of all the different processes running on the
tml-log container/pod. This can be used to monitor if the age of the process is same as
the pod's age or if it is getting restarted.

CPU Usage(%)

The CPU Usage(%) panel displays the CPU used in terms of percentage. These are
direct representations of percentage usage per core as shown when you run the top
command on any linux system. It doesn't average out the CPU usage against all the
cores present on the box since you would see usage more than 100%. This panel
displays the aggregated CPU usage by all the processes and CPU usage by an
individual process.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

59 | Accessing Grafana Dashboards and Reports

Memory Usage

The Memory Usage panel displays the memory used by the individual processes and
aggregated memory usage on the tml-log pod/container. This panel also the displays the
memory used in terms of percentage of the total memory of the node on which the
pod/container is running.

TMLNoSQLMetrics
The TML NoSQL Metrics page displays the CPU, memory, and status of processes
running on the tml-nosql pod/container. This graph displays memory utilization of service
and percentage usage against the node's memory. This page also shows the age of
different processes on the pod/container. You can select the time range (from the top
right corner) for which data has to be checked. This page requires you to select the pod
name from the drop down to see the metrics of that pod/container of type tml-nosql.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

60 | Accessing Grafana Dashboards and Reports

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

61 | Accessing Grafana Dashboards and Reports

Process Status

The Process Status panel displays the status of all the difference processes running on
the tml-nosql container/pod. If the process is running properly then this is displayed by
green upward arrow. If process is not alive then that process's status is displayed as red
downward arrow. This status is plotted at an interval of 1 minute as the metrics collection
interval is 1 minute.

Process Uptime

The Process Uptime panel displays the age of all the different processes running on the
tml-nosql container/pod. You can monitor if the age of the process is same as the pod's
age or if it is getting restarted.

CPU Usage(%)

The CPU Usage(%) panel displays the CPU used in terms of percentage. These are
direct representations of percentage usage per core as shown when you run the top
command on any linux system. It doesn't average out the CPU usage against all the
cores present on the box since you would see usage more than 100%. This panel
displays the aggregated CPU usage by all the processes and CPU usage by an
individual process.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

62 | Accessing Grafana Dashboards and Reports

Memory Usage

The Memory Usage report displays the memory used by the individual processes and
aggregated memory usage on the tml-nosql pod/container. This report also the displays
the memory used in terms of percenatge of the total memory of node on which the
pod/container is running.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

63 | Accessing Grafana Dashboards and Reports

TMLReportingMetrics
The TML Reporting Metrics page displays the CPU, memory and status of processes
running on the tml-reporting pod/container. This panel displays the memory utilization of
service and percentage usage against the node's memory. This page also shows the
age of different processes on the pod/container. You can select the time range from the
top right corner for which data has to be checked. This page require you to select the
pod name from the drop down to see the metrics of that pod/container of type tml-log.

Process Status

The Process Status panel displays the status of all the different processes running on
the tml-reporting container/pod. If the process is running properly then this is displayed
by a green upward arrow. If the process is not alive then that process's status is
displayed as a red downward arrow. This status is plotted at an interval of 1 minute since
the metrics collection interval is 1 minute.

Process Uptime

The Process Uptime panel displays the age of all the different processes running on the
tml-reporting container/pod. This can be used to monitor if the age of the process is the
same as the pod's age or if it is getting restarted.

CPU Usage(%)

The CPU Usage(%) panel displays the CPU used in terms of percentage. These are
direct representations of percentage usage per core as shown when you run the top
command on any linux system. It doesn't average out the CPU usage against all the
cores present on the box since you would see usage more than 100%. This panel
displays the aggregated CPU usage by all the processes and CPU usage by an

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

64 | Accessing Grafana Dashboards and Reports

individual process.

Memory Usage

The Memory Usage panel displays the memory used by the individual processes and
aggregated memory usage on the tml-reporting pod/container. This panel also the
displays the memory used in terms of percentage of the total memory of the node on
which the pod/container is running.

TMLSQLMetrics
The TML SQL Metrics page displays the CPU, memory and status of processes running
on the tml-sql pod/container. This page displays memory utilization of service and
percentage usage against the node's memory. This page also shows the age of different
processes on the pod/container. You can select the time range from the top right corner

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

65 | Accessing Grafana Dashboards and Reports

for which data has to be checked. This page requires you to select the pod name from
the drop down to see the metrics of that pod/container of type tml-sql.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

66 | Accessing Grafana Dashboards and Reports

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

67 | Accessing Grafana Dashboards and Reports

Process Status

The Process Status panel displays the status of all the different processes running on
the tml-sql container/pod. If the process is running properly then this is displayed by
green upward arrow. If process is not alive then that process's status is displayed as red
downward arrow. This status is plotted at an interval of 1 minute since the metrics
collection interval is 1 minute.

Process Uptime

The Process Uptime panel displays the age of all the different processes running on the
tml-sql container/pod. You can monitor if the age of the process is same as the pod's
age or if it is getting restarted.

CPU Usage(%)

The CPU Usage(%) panel displays the CPU used in terms of percentage. Thiese are
direct representations of percentage usage per core as shown when you run the top
command on any linux system. It doesn't average out the CPU usage against all the
cores present on the box since you would see usage more than 100%. This panel
displays the aggregated CPU usage by all the processes and CPU usage by an
individual process.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

68 | Accessing Grafana Dashboards and Reports

Memory Usage

The Memory Usage panel displays the memory used by the individual processes and
aggregated memory usage on the tml-sql pod/container. This panel also the displays the
memory used in terms of percenatge of the total memory of the node on which
pod/container is running.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

69 | Accessing Grafana Dashboards and Reports

TML TMMetrics
The TML TM Metrics page displays the CPU, memory and status of processes running
on the tml-tm pod/container. This page displays memory utilization of the service and
percentage usage against the node's memory. This page also shows the age of different
processes on the pod/container. You can select the time range from the top right corner
for which data has to be checked. This page require you to select the pod name from the

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

70 | Accessing Grafana Dashboards and Reports

drop down to see the metrics of that pod/container of type tml-tm.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

71 | Accessing Grafana Dashboards and Reports

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

72 | Accessing Grafana Dashboards and Reports

Process Status

The Process Status panel displays the status of all the different processes running on
the tml-tm container/pod. If the process is running properly then this is displayed by a
green upward arrow. If process is not alive then that process's status is displayed as a
red downward arrow. This status is plotted at an interval of 1 minute since the metrics
collection interval is 1 minute.

Process Uptime

The Process Uptime panel displays the age of all the different processes running on the
tml-tm container/pod. This can be used to monitor if the age of the process is same as
the pod's age or if it is getting restarted.

CPU Usage(%)

The CPU Usage(%) panel displays the CPU used in terms of percentage. These are
direct representations of percentage usage per core as shown when you run the top
command on any linux system. It doesn't average out the CPU usage against all the
cores present on the box since you would see usage more than 100%. This panel
displays the aggregated CPU usage by all the processes and CPU usage by an
individual process.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

73 | Accessing Grafana Dashboards and Reports

Memory Usage

The Memory Usage panel displays the memory used by the individual processes and
aggregated memory usage on the tml-tm pod/container. This panel also the displays the
memory used in terms of the percentage of the total memory of node on which the
pod/container is running.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

74 | Accessing Grafana Dashboards and Reports

HTTP Jetty Connections

The HTTP Jetty Connections panel displays the number of connections made to the
proxy on Port 80 and also displays the maximum number of connections that are created
to the proxy at any single point of time during the operations. This gives details about the
jetty connection pool and how it is being utilized and prompts you to change the
connection pool settings if it is hitting the upper limit set in the proxy configuration.

HTTP Jetty Connection Duration

The HTTP Jetty Connection Duration panel displays the average time taken by
connections made to the proxy on Port 80 and also shows the maximum time taken by a
single jetty connection to serve the traffic. This helps to know time taken by traffic
manager to serve the traffic and also to know if the time taken is in the permissible limits
or hitting the boundaries.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

75 | Accessing Grafana Dashboards and Reports

HTTPS Jetty Connections

The HTTPS Jetty Connections panel displays the number of connections made to the
proxy on Port 1443 and also displays the maximum number of connections that are
created to proxy at any single point of time during the operations. This gives details
about the jetty connection pool on the secured port.

HTTPS Max Jetty Connection Duration

The HTTPS Max Jetty Connection Duration panel displays the average time taken by
connections made to the proxy on port 1443 and also shows the maximum time taken by
a single jetty connection to serve the traffic. This helps to know the time taken by traffic
manager to serve the traffic and also to know if the time taken is in the permissible limits
or hitting the boundaries.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

76 | Accessing Grafana Dashboards and Reports

TMLVerbose Logs
The TML Verbose Logs displays the logs that are generated when you enable the
verbose feature that is similar to the verbose logs that are stored on the tml-log
pod/container. This enables you to debug the API in terms of the request sent to
Mashery CAM, (for example, InboundRequest), a request sent to the backend (for example,
InboundProcessed(TargetRequest)), a response received from the backend (for example,
OutboundResponse(TargetResponse)), and a response sent back to the client (for example,
OutboundProcessed).

This graph requires you to select the request_uuid from the Verbose Log Metadata table
so that the following log panel displays each type of logs for that request_uuid. You can
explore each type of logs in Grafana's Explore view by clicking on the log panel's down

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

77 | Accessing Grafana Dashboards and Reports

arrow and selecting the Explore view. This displays the logs in Explore view.

For this graph, verbose log metadata is stored on Prometheus and actual logs are stored
on Loki.

Note: Verbose log metadata is visible for the current day only, so you are not
be able to see the metadata and logs of previous days. But the Explore view
can be used to see each type of logs up to 4 days.

TMLContainer Logs
This panel displays the logs from different service from the container/pod as shown in
the dropdown process. This panel displays 1000 log records in the time range selected
on the top of the page. You can search the logs of services in the container/pod
deployed in the cluster and respective zone. The Search box provides an option to
search constant string, regex matching. These logs are displayed from the Loki
datasource so you can search 4 days of logs as configured in Loki's configuration.
These panels are configured for each type of container except the tml-reporting
container. These panels display the logs in descending order of time so that current logs
are displayed first.

l TML SQL Container Logs

l TML NoSQL Container Logs

l TML TM Container Logs

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

78 | Accessing Grafana Dashboards and Reports

l TML CM Container Logs

l TML Log Container Logs

l TML Cache Container Logs

TMLSQLContainer Logs

TMLNoSQLContainer Logs

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

79 | Accessing Grafana Dashboards and Reports

TMLTMContainer Logs

TMLCMContainer Logs

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

80 | Accessing Grafana Dashboards and Reports

TML LogContainer Logs

TMLCacheContainer Logs

Note: You are required to manually select correct clustername and zonename
combination.

You can view these logs in Grafana's explorer view, which enables you to give more
control over searches. You can open the explorer view of these logs by clicking on the

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

81 | Accessing Grafana Dashboards and Reports

down arrow next to the name of the panel. This opens the Explore view which can be
used to search logs and perform different operations on the searched logs. Refer to
Grafana's documentation on querying logs for more details about the Explore view in
Grafana for Loki datasource.

Customer Traffic Summary
The Customer Traffic Summary page displays the different tables showing summary of
calls count for different months, percentage of successful, blocked and other calls in the
current month. This page also displays the data about the top 5 services used and its
call counts in the current month; top 5 packages used and its call counts in the current

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

82 | Accessing Grafana Dashboards and Reports

month; and bottom 5 services and packages used along with call counts in the current
month. The data is extracted from the data paths exposed on fluentd service and get
scrapped by the Prometheus service. This data is stored on the Prometheus database,
for example, the file system mounted on the attached volume.

Total calls per month

The Total calls per month panel displays the table which shows the call count for
different months. This panel does not display data older than a year. This does give the
total count of calls served by the tml-cluster for the given month.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

83 | Accessing Grafana Dashboards and Reports

Calls by Status(Percentage)

The Calls by Status(Percentage) panel displays the percentage of successful, blocked
and Other calls served by the traffic manager.

l Successful: This displays the percentage of traffic calls for the status code 200 in
the current month.

l Blocked: This displays the percentage of traffic calls for the status code ranging
from 400 to 499 in the current month.

l Others: This displays the percentage of traffic calls for the status code other than
the above two conditions in the current month.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

84 | Accessing Grafana Dashboards and Reports

Top 5 Packages

The Top 5 Packages table shows the 5 highest used packages in the current month.

Bottom 5 Packages

The Bottom 5 Packages table shows the 5 lowest used packages in the current month.

Top 5 Services

The Top 5 Services table shows the 5 highest used services in the current month.

Bottom 5 Services

The Bottom 5 Services table shows the 5 lowest used services in the current month.

Note: Restarting of the Reporting Services pod would affect this graph, as all
the data paths are in run time memory of Fluentd service, so a restart would
not have old data paths on Fluentd service. However, you can search for a
specific month's data by creating a new graph and changing the query.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

85 | Customizing Dashboards and Reports

CustomizingDashboards andReports
You can always create a new dashboard or add a graph to the reporting infrastructure,
but you would not be allowed to make any changes to the existing, out of box provided
reports/dashboards. You should make a copy of the existing reports if you want to make
any changes to it. These new reports and dashboards can be exported for persisting it to
a version-controlled software as changes might get lost during a redeployment or
upgrade of the container.

For more details on customizing your dashboards and reports, see Basic Customization.

Basic Customization
You are able to make a copy of the existing reports and dashboards and then make any
changes to graphs, such as adding alerts, representing it in different available panels, or
changing the representation of data points as bar lines or point on the existing graph.
You can also make changes to rate interval from a default bucket of 5 minutes.

Note: In general, you would not be able to make any changes to existing
Boomi CAM-provided dashboards, however, you would be allowed to make
copy of it and make changes to it.

For more information, see:

l Adding Alerts

l Adding Alert Background

l Changing Bucket Interval

l Changing Data Virtualization

Adding Alerts
To add an alert:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

86 | Customizing Dashboards and Reports

Procedure
1. Create a copy of the Customer Traffic Detail Reports dashboard.

2. Click on the Dashboard settings icon as shown below.

3. Save the dashboard with a new name.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

87 | Customizing Dashboards and Reports

4. Edit the Traffic QPS Report/Graph.

5. Click on the Alert tab.

6. Click the Create Alert button for that graph.

This creates an alert for the query mentioned in the Query Section.

For example, the following alert is for detecting the traffic QPS falling below 400
QPS, where the alert would be evaluated at every minute for the past 1 minute of
data.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

88 | Customizing Dashboards and Reports

7. Click the Save button.

8. The alert is now added to the particular graph or report.

Adding Alert Dashboard
To add an alert dashboard:

Procedure
1. Create new dashboard by clicking the + symbol on the home page:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

89 | Customizing Dashboards and Reports

2. Add the new Alert Panel to the newly-created dashboard.

This shows all the alerts configured in the system..

3. Click Save, then change the name to Alert Dashboard and select the
CustomDashboards folder.

Note: You are able to make modifications to alerts stored in this
dashboard folder.

4. The new dashboard is now set up for monitoring alerts.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

90 | Customizing Dashboards and Reports

Changing Bucket Interval
To change a report's bucket interval:

The Traffic Based on Status Code report from Customer Traffic Detail Reports is used
in the following example, but you can choose to edit any dashboard by making a copy of
it.

Procedure
1. In the Traffic Based on Status Code report, right-click on the report and select

Edit.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

91 | Customizing Dashboards and Reports

2. In the Metrics field of the Query tab, change the rate of sum from 5m to 1m.

3. Click Save.

Changing Data Visualization
To change the representation of data of any graph which supports it:

The Traffic Based on Status Code report from Customer Traffic Detail Reports is
used in this example.

Procedure
1. In the Traffic Based on Status Code report, right-click on the report and select

Edit.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

92 | Customizing Dashboards and Reports

2. Go to the Visualization section (right of the edited graph).

3. Enable bar lines on the graph which was line earlier.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

93 | Customizing Dashboards and Reports

4. Click Save.

The graph's visualization changes from line graph to bar graph.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

94 | Persistence of Dashboards and Reports

PersistenceofDashboards andReports
The following section covers:

l Importing or Exporting Dashboards

l Uploading Custom Dashboards at the Time of Deployment

Importing or ExportingDashboards
Your can export newly created or changed dashboards to a local file system and it can
be persisted in any version-controlled software. These dashboards can be imported
back if the TML-Reporting container is redeployed or upgraded.

To import or export a dashboard:

Procedure
1. Select the newly created dashboard and click the Share Dashboard icon.

2. From the Export tab, click Save to file option. This downloads the file to your local
file system.

3. You can import the custom dashboards back to Grafana if the TML-Reporting
container is redeployed or upgraded. This can be done once the TML-Reporting
container is up and accessible.

4. Upload the dashboard file (json format) from the local file system.

5. Make the UID a constant unique string when importing back or making changes to
the file itself. This would, for example, avoid duplication of the dashboard and
prevent you from saving a dashboard with same UID if that UID's dashboard is
already present in the system.

"timezone": "",
"title": "Alert Dashboards",
"uid": "AlertDashboard",
"version": 4

6. Click on Import.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

95 | Persistence of Dashboards and Reports

UploadingCustomDashboards at the Time of
Deployment
You can import custom dashboards at the time of deployment if the TML-Reporting
container is upgraded or ready for production use. You can create or change all the
dashboards in your environment and upload the modified dashboards in the
CustomDashboards resources as shown in the User Content During Deployment
section in the Grafana Dashboards topic.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

96 | FAQs

FAQs
How do I get Grafana's URL?

For k8s cluster:

1. Run:

kubectl get svc

This lists all the services and external IPs of the Load Balancer. Select the Load
Balancer IP of the reporting app named "reporting-app-0".

2. Access the Grafana dashboard: http://<External_IP_Of_Loadbalancer_Of_
ReportingApp>:3000

For OpenShift cluster:

1. Run:

oc get svc

This lists all the services and external IPs of the Load Balancer. Select the Load
Balancer IP of the reporting app named "reporting-app-0".

2. Access the Grafana dashboard: http://<External_IP_Of_Loadbalancer_Of_
ReportingApp>:3000

For Swarm cluster:

1. Access the Grafana dashboard using the Swarm master's public IP:
http://<SWARM_MASTER_IP>:3000

How do I label a node for reporting in a k8s or OpenShift cluster?
For k8s cluster:

kubectl label nodes <nodename>
node-name=reporting

For OpenShift cluster:

oc label nodes <nodename>

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

97 | FAQs

How do I label a node for reporting in a k8s or OpenShift cluster?

node-name=reporting

Note: Also refer to Prerequisites for more information.

How do I see the labels on a node?
To see the labels on the nodes for k8s cluster:

kubectl get nodes --show-labels

To see labels on the nodes for OpenShift cluster:

oc get nodes --show-labels

Verify that one of the nodes is labelled as "node-name=reporting".

How to get the node running the reporting pod/container?
To see on which node the reporting pod in running on a k8s cluster:

kubectl get pods -o wide

To see on which node the reporting pod in running on an OpenShift k8s cluster:

oc get pods -o wide

To see on which node the reporting pod in running on a Swarm cluster, run the
following command on the node which has a placement constraint for the reporting
container:

docker ps

Where can logs for different services in the reporting-pod be checked?
There four different services that are running on reporting pod/container:

l Grafana's logs can be checked at /var/log/grafana/

l Prometheus's logs can be checked at /var/log/prometheus/

l Loki's logs can be checked at /var/log/loki/

l Fluentd logs can be checked at /var/log/fluentd/

You can also check the entry point logs to see where the configuration for different

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

98 | FAQs

Where can logs for different services in the reporting-pod be checked?
services are picked up from at /var/log/reporting_entrypoint.log

What is the retention period of different types of data in the reporting container?
l Retention for metrics related to traffic and access logs is 1 year.

l Retention for all other metrics is 4 days.

l Retention for verbose metadata is 1 day.

l Retention for Container's log data is 4 days.

How do I change the retention of metrics in Prometheus?
Create a file cleanup_prometheus_data.ini and add the following details:

[DELETION_PERIOD]
Deletion period of prometheus data, its in days(number of days for which data has to be kept)
VERBOSE_METRICS_DATA_DELETION={number_of_days}
PROCESS_METRICS_DATA_DELETION={number_of_days}

Save this file and follow instructions in the TML-Reporting Configuration topic to apply
the changes during deployment.

How do I change the retention of metrics in Loki?
Create a file loki-docker-config.yaml and paste the following content. Change the value
of variable "{hours e.g. 96h}" to keep the application logs:

auth_enabled: false

server:
http_listen_port: 3100

ingester:
lifecycler:
address: 127.0.0.1
ring:
kvstore:
store: inmemory
replication_factor: 1
final_sleep: 0s
chunk_idle_period: 5m
chunk_retain_period: 30s
max_transfer_retries: 0
chunk_target_size: 1536000

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

99 | FAQs

How do I change the retention of metrics in Loki?

schema_config:
configs:
- from: 2020-07-15
store: boltdb
object_store: filesystem
schema: v11
index:
prefix: index_
period: {hours e.g. 96h}

storage_config:
boltdb:
directory: /mnt/data/loki/index
filesystem:
directory: /mnt/data/loki/chunks

limits_config:
enforce_metric_name: false
reject_old_samples: true
reject_old_samples_max_age: {hours e.g. 96h}
ingestion_rate_mb: 16
ingestion_burst_size_mb: 16

chunk_store_config:
max_look_back_period: 0s

table_manager:
retention_deletes_enabled: true
retention_period: {hours e.g. 96h}

Save this file and follow instructions in the Loki Configuration topic to apply the changes
during deployment.

In which zone reporting-pod will be deployed in multi-zone environment?
In a multi-zone environment, the first zone value (in the array of zone names) given in
the manifest file need to be used for labelling. This is the default zone in which reporting
would be deployed, provided the node in that zone is properly labelled, as specified in
the Prerequisites section.

Will the reporting-pod be displayed in the "cluster manager ls components"
command?

No. The reporting pod/container is not managed by TML-cluster, so it won't be listed by
Cluster Manager's list components command.

How do I check the reporting-pod's status?
For K8s cluster:

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

100 | FAQs

How do I check the reporting-pod's status?

kubectl get pods | grep -i reporting-set-0-0

For OpenShift cluster:

oc get pods | grep -i reporting-set-0-0

For Swarm cluster: Navigate to the node which hosts the reporting pod, then run the
command:

docker ps -a | grep -i reporting

How is the QPS rate calculated?
Traffic/Qps Rate Computation.

QPS is the rate of traffic calls per second. It is a rate function calculated on a duration of
sliding window (default 5 minutes). In a sliding window of 5 (300 seconds) minutes, the
QPS is computed as `total_traffic_in_5_mins/(5*60)`. For low traffic conditions, the
actual QPS would be near zero and show up as fractions or decimal values on the
graph. For example, for 60 calls in 5 minutes, the QPS would be 60/(5*60) i.e.1/5 or
0.20. For 18K calls in 5 minutes, the QPS would be 18000/(5*60) i.e 60 QPS. For finer
granularity, reduce the window size to a lesser value (minimum 1 minute).

Why is CPU percentage going beyond 100%?
%CPU -- CPU Usage is the percentage of your CPU that is being used by the process.
By default, the top displays this as a percentage of a single CPU. On multi-core
systems, you can have percentages that are greater than 100%. For example, if 3 cores
are at 60% use, the top will show a CPU use of 180% for that process. Total CPU
Usage graph is the summation of CPU usage of individual processes that are running
on that pod/container.

Why is there a different value for uptime metrics if the time range is changed?
The interval to fetch the data for a graph in Grafana is changed for queries having a
time range greater than 24 hours. In the case where the selected time range is greater
than 1 day, the step interval changes from 1 minute (default) to a higher interval of
aggregated data to reduce the number of data points fetched from Prometheus, thus
reducing the turnaround time for any query. Due to a change in step interval, the data
fetched might be an old data point which displays different values in the graph as per
the step interval. For example, if the step interval is 2 minutes, then the last data point
fetched would be of n-2 minute where n is the current minute. So, the single stats panel

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

101 | FAQs

Why is there a different value for uptime metrics if the time range is changed?
would display that data point only. This would vary depending upon the time range
selected in the dashboard.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

102 | Troubleshooting

Troubleshooting

How do I check failure in reporting-pod's deployment?

To check if the Reporting pod is not coming to running state, then pod's deployement
should be described using the following command:

kubectl describe pod reporting-set-0-0

For OpenShift cluster:

oc describe pod reporting-set-0-0

Check for any errors. The most common error would be that it doesn't find the node to be
deployed if you forget to label the node.

Why do I see the following errors in fluentd-others.log log file?

2021-02-08 11:56:14 +0000 [warn]: #1 failed to write post to http://localhost:3100/loki/api/v1/push
(400 Bad Request entry with timestamp 2021-02-08 11:56:10 +0000 UTC ignored, reason: 'entry
out of order' for stream: {cluster_name="PLVal-multizone-kk-pune", fluentd_thread="flush_thread_
0", function="lifecycle", process="containeragent", tag="tml-tm.tmdata", type="container", zone_
name="eastus-2"},
entry with timestamp 2021-02-08 11:56:10 +0000 UTC ignored, reason: 'entry out of order' for
stream: {cluster_name="PLVal-multizone-kk-pune", fluentd_thread="flush_thread_0",
function="lifecycle", process="containeragent", tag="tml-tm.tmdata", type="container", zone_
name="eastus-2"},
entry with timestamp 2021-02-08 11:56:10 +0000 UTC ignored, reason: 'entry out of order' for
stream: {cluster_name="PLVal-multizone-kk-pune", fluentd_thread="flush_thread_0",
function="lifecycle", process="containeragent", tag="tml-tm.tmdata", type="container", zone_
name="eastus-2"},
entry with timestamp 2021-02-08 11:56:10 +0000 UTC ignored, reason: 'entry out of order' for
stream: {cluster_name="PLVal-multizone-kk-pune", fluentd_thread="flush_thread_0",
function="lifecycle", process="containeragent", tag="tml-tm.tmdata", type="container", zone_
name="eastus-2"},
entry with timestamp 2021-02-08 11:56:10 +0000 UTC ignored, reason: 'entry out of order' for
stream: {cluster_name="PLVal-multizone-kk-pune", fluentd_thread="flush_thread_0",
function="lifecycle", process="containeragent", tag="tml-tm.tmdata", type="container", zone_
name="eastus-2"},
entry with timestamp 2021-02-08 11:56:10 +0000 UTC ignored, reason: 'entry out of order' for

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

103 | Troubleshooting

stream: {cluster_name="PLVal-multizone-kk-pune", fluentd_thread="flush_thread_0",
function="lifecycle", process="containeragent", tag="tml-tm.tmdata", type="container", zone_
name="eastus-2"},
entry with timestamp 2021-02-08 11:56:10 +0000 UTC ignored, reason: 'entry out of order' for
stream: {cluster_name="PLVal-multizone-kk-pune", fluentd_thread="flush_thread_0",
function="lifecycle", process="containeragent", tag="tml-tm.tmdata", type="container", zone_
name="eastus-2"},
total ignored: 7 out of 15
)

This happens when all the logs with same timestamp are pushed to the Loki service
from Fluentd.

Why the new dashboard is not loading into the Grafana's service?

First, check the Grafana's service logs for any errors:

/var/log/grafana/

Next, correct the dashboard and redeploy the reporting container with the changes.

Why isn't the reporting pod getting deployed in the k8s cluster?

First, check if the node in first zone (for multi-zone) or into default zone (for single zone)
is added with the required label. Next, describe the pod and check for any deployment
error:

kubectl describe pod reporting-set-0-0

For OpenShift cluster:

oc describe pod reporting-set-0-0

Why isn't the reporting container getting deployed in the Swarm cluster?

First, check the placement constraint for the following key in the tmgc-
reporting.yml"node.hostname". Next, add the required constraint as mentioned in
Prerequisites. Then, check if the required variable is exposed in the shell where the
deployment script is running.

echo $REPORTING_HOST_NAME

If the above variable is not set, then set this variable with the worker name where

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

104 | Troubleshooting

reporting has to run.

export REPORTING_HOST_NAME=<node_name>

3.

Boomi Cloud™ API Management - Local Edition Reporting Services Guide

105 | Boomi References

BoomiReferences
Refer to these links to learn more about Boomi privacy policy, terms of service, and
Boomi help documentation:

Privacy Policy
Terms of Service
Help Documentation

https://boomi.com/privacy/
https://boomi.com/legal/service/
https://help.boomi.com/

	Contents
	Overview
	Reporting Services Concepts
	Reporting Services Architecture
	Types of Reports
	Traffic Summary
	Mashery CAM Operations

	Infrastructure Planning, Sizing and Deployment
	Prerequisites
	Installing the Reporting Services
	Deploying the Reporting Services
	Deploying the Reporting Services along with TML-Cluster
	Deploying the Reporting Services Separately after TML-Cluster Deployment
	Deploying Multiple Reporting Services
	Quick Start Deployment

	Configuring Clusters
	Customizing the User Interface
	Grafana Dashboards
	Fluentd Configuration
	Loki Configuration
	Prometheus Configuration
	TML-Reporting Configuration

	Verification
	Accessing Grafana Dashboards and Reports
	Managing Users and Roles
	Managing Dashboards
	Customer Traffic Detail Reports
	TML Cache Metrics
	TML CM Metrics
	TML Logs Metrics
	TML NoSQL Metrics
	TML Reporting Metrics
	TML SQL Metrics
	TML TM Metrics
	TML Verbose Logs
	TML Container Logs
	TML SQL Container Logs
	TML NoSQL Container Logs
	TML TM Container Logs
	TML CM Container Logs
	TML Log Container Logs
	TML Cache Container Logs

	Customer Traffic Summary

	Customizing Dashboards and Reports
	Basic Customization
	Adding Alerts
	Adding Alert Dashboard
	Changing Bucket Interval
	Changing Data Visualization

	Persistence of Dashboards and Reports
	Importing or Exporting Dashboards
	Uploading Custom Dashboards at the Time of Deployment

	FAQs
	Troubleshooting
	Boomi References

