
© 2024 Copyright Boomi, LP. All Rights Reserved.

Boomi Cloud™ API Management - Local
Edition
SDK Guide
Version 5.6.2 | November 2024

Boomi Cloud™ API Management - Local Edition SDK Guide

2 | Contents

Contents
Contents 2

Overview 5
The Local Edition SDK 5

SDK Components 5

System Requirements 6

Quick Start 8
Step 1: Creating an Adapter Project 8

Pre or Post Processor 9

Custom Authenticator 9

Step 2: Packaging the Adapter 10

Step 3: Uploading the Build Adapters to Local Edition-Installer Build Job 11

Step 4: Building the Changing Local Edition-TM Docker image with Customer-
Provided Adapters or Processors 12

Step 5: Configuring Endpoints for Processors 14
Tethered 15

Upgrading the Local Edition SDK 5.2 or 5.3 or 5.4 to Local Edition
SDK 5.5 19

Downgrading Local Edition SDK to an Earlier Version 21

Configuring Network Proxy for Boomi Cloud™ API Management -
Local Edition SDK 22

Adapter SDK Package 23
Boomi Cloud™ API Management - Local Edition Domain SDK 23

Boomi Cloud™ API Management - Local Edition Infrastructure SDK 23

Boomi Cloud™ API Management - Local Edition SDK Guide

3 | Contents

Developing Processors and Authenticators 25
SDK Domain Model 25

Extended Attributes 29

Pre and Post Processor Extension Points 30

Listener Pattern 30

Event Types and Event 30

Event Listener API 31

Importing Existing Adapters 31

Developing and Packaging Multiple Adapters 32

Using the Adapter SDK in an IDE 33
Creating an Adapter using Eclipse 33

Importing the Local Edition SDK into Eclipse IDE 34

Creating an Adapter using IntelliJ IDEA 37

Creating an Adapter using Apache NetBeans 40

Adding Third-Party Libraries in an Adapter 43

Adding third-party library for Eclipse environment 43
Referring to Third-party Libraries with Dependency 45

Debugging the Adapter 47
Adding Logger Utility Class 47

Changing Log Levels 47

Checking Adapter Logs 50

Debugging SDK Processor Remotely 50

Implementing and Registering Processors and Adapters 57
Implementing a Processor or Adapter 57

Creating a Pre-processing Adapter 57
Reading Body Content of Request 57

Modifying the Request Body 58

Terminating Further Processing for Unavailable Header 59

Creating a Post-processing Adapter 60
Add Custom Header to the Response to Client 60

Boomi Cloud™ API Management - Local Edition SDK Guide

4 | Contents

Modifying Body Content of Response to Client 61

Creating a Custom Authenticator 62
Stopping a Processing Request on Authentication Failure 62

Continue Processing Request for Successful Authentication 63

Implementing the Event Listener 64

Implementing Lifecycle Callback Handling 65

Caching Content 67

Terminating a Call During Processing of an Event 68

Accessing and Using Extended Attributes 71

How to Send Response Body to Another Location Other Than Caller 73

How to Externalize Properties and Files from SDK-Built Adapters 74

Accessing Plan, Package and Application ID in Custom Processor 74

Chaining of Processors 76
Chaining of Processors Using Mashery_Proxy_Processor_Chain 78

Chaining of Processor Using Chain Adapter 80

FAQs 84

Boomi References 85

Boomi Cloud™ API Management - Local Edition SDK Guide

5 | Overview

Overview
The Boomi Cloud™ API Management - Local Edition (CAM) Software Development Kit
(SDK) is an extension application programming interface (API) using which the traffic
manager capabilities can be extended to handle requests.

The API uses a listener pattern to perform callbacks during different stages of the
request flow. Each step in the flow performs a specific task for fulfilling the request. With
the Boomi Cloud API Management - Local Edition (Local Edition) SDK users can inject
hooks in the following steps:

1. Pre process - Prior to invoking the API Server.

2. Post process - After receiving response from API server.

The Local Edition SDK
The Local Edition SDK is implemented as a Gradle project. The SDK project structure is
same as that of Gradle multi-project configurations.

Note: You do not need to install Gradle separately. The Local Edition SDK
takes care of it at the time of installation.

SDK Components
The contents of Local Edition SDK are:

l Scripts to create boiler plates for adapters

l Script to create distribution packages

l Examples

l Local Edition SDK libraries

l Gradle Build framework

Boomi Cloud™ API Management - Local Edition SDK Guide

6 | Overview

l Javadocs for the libraries

|MasheryLocalSDK/
|--createadapterproject.gradle
|--pre-post-processor.template
|--libs/
|--org.slf4j.api_{version}.jar
|--com.mashery.util_{version}.jar
|--com.mashery.trafficmanager.sdk_{version}.jar
|--com.mashery.http_{version}.jar

|--docs/
|--javadoc/

|--create-adapter.sh
|--create-adapter.bat
|--build.subproject.gradle.template
|--build-adapter.sh
|--build-adapter.bat
|--LICENSE
|--authenticator-adapter.template
|--gradlew.bat
|--build.gradle
|--common.gradle
|--settings.gradle
|--gradle.properties
|--gradlew.sh
|--gradlew.bat
|--upgrade-sdk.sh
|--upgrade-sdk.bat
|--rollback-sdk.sh
|--rollback-sdk.bat
|--gradle/
|--wrapper/

|--gradle-wrapper.properties
|--gradle-wrapper.jar

|--examples/

System Requirements
The following table lists the system requirements.

Java SE 11 or higher version

Boomi Cloud™ API Management - Local Edition SDK Guide

7 | Overview

Text editor or any Gradle enabled integrated development environment. For more
information see, Using the Adapter SDK in an IDE.

Local Edition SDK

Boomi Cloud™ API Management - Local Edition SDK Guide

8 | Quick Start

Quick Start
This section provides an overview of the basic workflow of Local Edition SDK.

Estimated time to get started using the steps in this section: 30 minutes.

Before you begin
Before getting started with developing the Local Edition environment, carry out the
following steps:

1. Download the Local Edition artifact.

2. Locate the sdk.zip file (TIB_mash-local_***.tar.gz).

3. Extract contents of sdk.zip to a known location.

4.

Note: Windows user can skip this step.

In the terminal or command prompt, navigate to the folder of the extracted
contents.

/home/user/MasheryLocalSDK$ chmod +x gradlew create-adapter.sh build-adapter.sh

Procedure
1. Creating an Adapter Project

2. Packaging the Adapter Project

3. Uploading the Build Adapters to -Installer Build Job

4. Building the Changing -TM Docker image with Customer-Provided Adapters or
Processors

5. Configuring Endpoints for Processors

Step 1: Creating an Adapter Project
Describes how to create an adapter project.

Boomi Cloud™ API Management - Local Edition SDK Guide

9 | Quick Start

Pre or Post Processor

Procedure
1. To create an adapter project, use the create-adapter script in the terminal or

command prompt.
l Command for Linux or MacOS X:

/home/user/MasheryLocalSDK$./create-adapter.sh --project-name MyCustomAdpater --adapter-
type TrafficEventListener --adapter-name MyCustomProcessor --package-name
com.companyname.apim.adapter

l Command for MS Windows:

C:\Users\Administrator\MasheryLocalSDK> create-adapter.bat --project-name MyCustomAdapter --
adapter-type TrafficEventListener --adpater-name MyCustomProcessor --package-name
com.companyname.apim.adapter

2. Change the project name, adapter name, and package name.
Running the script for the first time downloads the necessary gradle binaries.

3. Open the JAVA source MyCustomProcessor.java in a text editor and write the
processing logic for pre and post processing.

Custom Authenticator

Procedure
1. To create an adapter project, use the create-adapter script in the terminal or

command prompt.
l Command for Linux or MacOS X:

/home/user/MasheryLocalSDK$./create-adapter.sh --project-name MyCustomAdpater --adapter-
type Authenticator --adapter-name MyCustomAuthenticator --package-name
com.companyname.apim.adpater

l Command for MS Windows:

Boomi Cloud™ API Management - Local Edition SDK Guide

10 | Quick Start

C:\Users\Administrator\MasheryLocalSDK> create-adapter.bat --project-name MyCustomerAdapter
--adapter-type Authenticator --adapter-name MyCustomAuthenticator --package-name
com.companyname.apim.adapter

2. Change the project name, adapter name, and package name.
Running the script for the first time downloads the necessary gradle binaries.

3. Open the JAVA source MyCustomProcessor.java in a text editor and implement
authenticator logic.

Note: For more information to edit in an IDE, see Using the Adapter SDK
in and IDE.

Step 2: Packaging the Adapter
The build adapter script is used for compiling and packaging the adapter.

To package the adapter:

Procedure
1. Run the build script.

l Command for Linux/MacOS :

/home/user/MasheryLocalSDK$./build-adapter.sh

l Command for Windows :

C:\Users\Administrator\MasheryLocalSDK> build-adapter.bat

The build script reports the compilation errors. In case of any reported errors rerun
the build script.

2. The script generates an archive file under MasheryLocalSDK > dist folder with
the name tml-mashery-customer-extension.zip. Upload this adapter to the Local
Edition installer.

Boomi Cloud™ API Management - Local Edition SDK Guide

11 | Quick Start

Step 3: Uploading the Build Adapters to Local
Edition-Installer Build Job
To upload a build adapter:

Procedure
1. Open the installer's Jenkins in any browser.

2. Click the Prebuild tab and then click upload_customer_built_adapter.

3. On the left side of the window, click Build With Parameters, then click Browse....
Select the build adapter file.

Boomi Cloud™ API Management - Local Edition SDK Guide

12 | Quick Start

4. Click Build to upload the adapter to Jenkins server.

Note:

l A customer-built adapter is built by a customer using Local Edition
SDK and it is a zip file.

l The zip file is uploaded to /var/jenkins_home/userContent/proxy-extension
in the tml-installer container.

Step 4: Building the Changing Local Edition-TM
Docker image with Customer-Provided
Adapters or Processors
This section describes how to build the Local Edition-TM Docker image with adapters
built by a customer.

1. After uploading the Adapter/Processor to Local Edition Local-Installer job, build the
new Local Edition-TM Docker image.

Boomi Cloud™ API Management - Local Edition SDK Guide

13 | Quick Start

2. Open the installer's Jenkins in any browser and click the Build tab.

3. Click on build_docker job and Click on build with parameters.

4. Once build is completed, the Docker images are available. For example,

Boomi Cloud™ API Management - Local Edition SDK Guide

14 | Quick Start

Step 5: Configuring Endpoints for Processors
The endpoints of processors can be either Tethered or Untethered.

Untethered

The Untethered configuration is a two-stage process:

1. Navigate to Config Manager GUI from your setup.

2. Navigate to API's endpoint.

Procedure
To register a custom authenticator:

1. In the Configuration Manager, click Endpoints tab and then click Protocol &
Authentication.

2. Select Request Authentication Type as Custom

Boomi Cloud™ API Management - Local Edition SDK Guide

15 | Quick Start

3. In the Custom Authentication Adapter field, provide the processor bean's name
from adapter com.companyname.mashery.adapter.MyCustomAuthenticator.
To register a processor:

4. In the Configuration Manager, select Endpoints tab and then click Call
Transformation.

5. In the Adapter field, provide the processor bean's name from adapter
com.companyname.apim.adapter.

6. Select the appropriate check box for performing the transformation Preprocess or
Postprocess.

Tethered
The tethered configuration is a two-stage process:

1. Navigate to API Design > Select an API.

2. Navigate to API's endpoint.

Registering a Custom Authenticator

Procedure
1. In the Configuration Manager, click Key and Method detection tab.

2. Select Request Authentication Type as Custom.

Boomi Cloud™ API Management - Local Edition SDK Guide

16 | Quick Start

3. In the Customer Request Authentication Adapter field provide the processor
bean's name from adapter
com.companyname.apim.adapter.MyCustomAuthenticator.

Boomi Cloud™ API Management - Local Edition SDK Guide

17 | Quick Start

Registering a Processor
4. In the Configuration Manager, select Call Transformation tab.

5. In the Adapter field provide the processor bean's name from adapter
com.companyname.apim.adapter.MyCustomProcessor .

Boomi Cloud™ API Management - Local Edition SDK Guide

18 | Quick Start

6. Select the appropriate check box for performing the transformation Preprocess or
Postprocess.

Boomi Cloud™ API Management - Local Edition SDK Guide

19 | Upgrading the Local Edition SDK 5.2 or 5.3 or 5.4 to Local Edition SDK 5.5

Upgrading the Local Edition SDK 5.2 or 5.3
or 5.4 to Local Edition SDK 5.5
These instructions apply if you are upgrading from Local Edition 5.2 or 5.3 or 5.4 to
Local Edition 5.5. Pre-built adapters can also be upgraded from earlier versions of Local
Edition SDK.

Procedure
1. Extract the TIB_mash-local_5.5.0.GA*.tar.gz to your desired location and locate the

sdk.zip file.

2. Extract contents of sdk.zip to a known location.

Note: Windows users can skip this step.

3. Navigate to the location where you have extracted the sdk.zip file.

In the command prompt, input the following:

a. cd <extract location>/MasheryLocalSDK

b. chmod +x upgrade-sdk.sh

4. In the command prompt, input the path of the extracted contents of Local Edition
5.2 or Local Edition 5.3 or Local Edition 5.4.
l For windows:

C:\Users\Administrator\MasheryLocalSDK> upgrade-sdk.bat -d "<path of TML 5.2
MasheryLocalSDK folder>"

Or

C:\Users\Administrator\MasheryLocalSDK> upgrade-sdk.bat -d "<path of TML 5.3
MasheryLocalSDK folder>"

Or

Boomi Cloud™ API Management - Local Edition SDK Guide

20 | Upgrading the Local Edition SDK 5.2 or 5.3 or 5.4 to Local Edition SDK 5.5

C:\Users\Administrator\MasheryLocalSDK> upgrade-sdk.bat -d "<path of TML 5.4
MasheryLocalSDK folder>"

l For Linux/MacOS:

/home/user/MasheryLocalSDK$./upgrade-sdk.sh -d "<path of TML 5.2
MasheryLocalSDK folder>"

Or

/home/user/MasheryLocalSDK$./upgrade-sdk.sh -d "<path of TML 5.3
MasheryLocalSDK folder>"

Or

/home/user/MasheryLocalSDK$./upgrade-sdk.sh -d "<path of TML 5.4
MasheryLocalSDK folder>"

What to do next
The libraries, documents and example folder will get updated. You will be required to
rebuild the processors and other extensions.

To rebuild the adapters:

build-adapter.sh

build-adapter.bat

Boomi Cloud™ API Management - Local Edition SDK Guide

21 | Downgrading Local Edition SDK to an Earlier Version

Downgrading Local Edition SDK to an
Earlier Version
The operation to rollback an upgrade to an earlier version of Local Edition SDK are
similar to the upgrade path.

Input the following as applicable.

l For windows:

C:\Users\Administrator\MasheryLocalSDK>./rollback-sdk.bat--destination-sdk-
path<OLDER_SDK_PATH>--target-adapters<ADAPTER_NAME_1#ADAPTER_NAME_2>

l For Linux/MacOS:

/home/user/MasheryLocalSDK$./rollback-sdk.sh--destination-sdk-path<OLDER_SDK_
PATH>--target-adapters<ADAPTER_NAME_1#ADAPTER_NAME_2>

Note: Target adapter is optional.

Boomi Cloud™ API Management - Local Edition SDK Guide

22 | Configuring Network Proxy for Boomi Cloud™ API Management - Local Edition SDK

Configuring Network Proxy for Boomi
Cloud™ API Management - Local Edition
SDK
Incase your internet access is governed by a network proxy, complete the following
steps to configure the SDK using proxy.

Procedure
1. Edit the Gradle settings file at <extract-location>/MasheryLocalSDK/gradle.properties.

2. Configure HTTPS URI.

systemProp.https.proxyHost=www.somehost.org
systemProp.https.proxyPort=proxy_port

3. Configuration proxy for HTTP URI.

systemProp.http.proxyHost=www.somehost.org
systemProp.http.proxyPort=proxy_port

For more information on advance configuration like credentials and no proxy
settings, see Accessing the Web Through a Proxy.

https://docs.gradle.org/4.10.2/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Boomi Cloud™ API Management - Local Edition SDK Guide

23 | Adapter SDK Package

Adapter SDK Package
The Adapter SDK defines the Traffic Manager domain model, tools and APIs and
provides extension points to inject custom code in the processing of a call made to the
Traffic Manager.

Note: The DIY SDK adapters need to be coded and compiled using JDK 1.6
or any lower version.

The Adapter SDK package contains the following:

l Boomi Cloud™ API Management - Local Edition
Domain SDK

l Boomi Cloud™ API Management - Local Edition
Infrastructure SDK

Boomi Cloud™ API Management - Local Edition
Domain SDK
Boomi Cloud™ API Management - Local Edition SDK packaged in
com.mashery.trafficmanager.sdk identifies the traffic manager SDK and provides access to
the Local Edition domain model which includes key objects such as Members,
Applications, Developer Classes, Keys, Packages.

Boomi Cloud™ API Management - Local Edition
Infrastructure SDK
Boomi Cloud™ API Management - Local Edition Infrastructure SDK provides the ability
to handle infrastructure features and contains the following:

l Boomi Cloud™ API Management - Local Edition HTTP Provider

Boomi Cloud™ API Management - Local Edition SDK Guide

24 | Adapter SDK Package

The HTTP provider packaged as com.mashery.http provides HTTP
Request/Response processing capability and tools to manipulate the HTTP
Request, Response, their content and headers.

l Boomi Cloud™ API Management - Local Edition Utility

The utility packaged as com.mashery.util provides utility code which handles
frequently occurring logic such as string manipulations, caching, specialized
collection handling, and logging.

Boomi Cloud™ API Management - Local Edition SDK Guide

25 | Developing Processors and Authenticators

Developing Processors and Authenticators
This section provides the details of the SDK domain model, the objects that can be used
in custom processors and authenticators. It also guides about advanced use cases in
developing and packaging extensions.

The following are covered:

l SDK Domain Model

l Importing Existing Adapters

l Developing Multiple Adapters

l Using the Adapter SDK in an IDE

l Adding Third-Party Libraries in an Adapter

SDK Domain Model
The Traffic Manager domain model defines the elements of the Traffic Manager runtime.

The following table highlights some of the key elements:

Element Description Usage

User A user or member
subscribing to APIs
and accesses the
APIs.

com.mashery.trafficmanager.model.User

API An API represents the
service definition. A
service definition has
endpoints defined for
it.

com.mashery.trafficmanager.model.API

Boomi Cloud™ API Management - Local Edition SDK Guide

26 | Developing Processors and Authenticators

Element Description Usage

Endpoint An Endpoint is a
central resource of an
API managed within
Local Edition. It is a
collection of
configuration options
that defines the
inbound and outbound
URI's, rules,
transformations, cache
control, security, etc.
of a unique pathway of
your API.

An Endpoint is
specialized as either
an API Endpoint or a
Plan Endpoint. This
specialization provides
context to whether or
not the Endpoint is
being used as part of a
Plan or not.

l Generic endpoint entity representation:

com.mashery.trafficmanager.model.Endpoint

l API endpoint entity representation:

com.mashery.trafficmanager.model.APIEndpoint

l Plan endpoint entity representation:

com.mashery.trafficmanager.model.PlanEndpoint

Method A method is a function
that can be called on
an endpoint and
represents the method
currently being
accessed or requested
from the API request.
A method could have
rate and throttle limits
specified on it to
dictate the volume of
calls made using a
specific key to that
method.

l Generic method entity representation:

com.mashery.trafficmanager.model.Method

l API method entity representation:

com.mashery.trafficmanager.model.APIMethod

l Plan method entity representation:

com.mashery.trafficmanager.model.PlanMethod

Boomi Cloud™ API Management - Local Edition SDK Guide

27 | Developing Processors and Authenticators

Element Description Usage

A Method is
specialized as either
an API Method or Plan
Method. The
specialization provides
context to whether or
not the Method belong
to a Plan.

Package A Package is a
mechanism to bundle
or group API capability
allowing the API
Manager to then offer
these capabilities to
customers/users
based on various
access levels and
price points. A
Package represents a
group of Plans.

com.mashery.trafficmanager.model.Package

Plan A Plan is a collection
of API endpoints,
methods and response
filters to group
functionality so that
API Product Managers
can manage access
control and provide
access to appropriate
Plans to different
users.

com.mashery.trafficmanager.model.Plan

API Call The API Call object is
the complete
transaction of the

com.mashery.trafficmanager.model.core.APICall

Boomi Cloud™ API Management - Local Edition SDK Guide

28 | Developing Processors and Authenticators

Element Description Usage

incoming request
received by the Traffic
Manager and the
outgoing response as
processed by the
Traffic Manager. It
provides an entry point
into all other entities
used in the execution
of the request.

Key A key is an opaque
string allowing a
developer to access
the API functionality. A
key has rate and
throttle controls
defined on it and
dictates the volume of
calls that can be made
to the API by the
caller.

A Key can be
specialized as an API
key or Package Key.
This specialization
provides context to
whether the key
provides access to an
API or a specific Plan
in a Package.

l Generic key entity representation:

com.mashery.trafficmanager.model.Key

l API key entity representation:

com.mashery.trafficmanager.model.APIKey

l Package key entity representation:

com.mashery.trafficmanager.model.PackageKey

Application An application is a
developer artifact that
is registered by the
developer when he
subscribes to an API

com.mashery.trafficmanager.model.Application

Boomi Cloud™ API Management - Local Edition SDK Guide

29 | Developing Processors and Authenticators

Element Description Usage

or a Package.

Rate
Constraint

A Rate Constraint
specifies how the
amount of traffic is
managed by limiting
the number of calls per
a time period (hours,
days, months) that
may be received.

com.mashery.trafficmanager.model.RateConstraint

Throttle
Constraint

A Throttle Constraint
specifies how the
velocity of traffic is
managed by limiting
the number of calls per
second that may be
received.

com.mashery.trafficmanager.model.ThrottleConstraint

Customer
Site

A customer specific
area configured
through the developer
portal.

com.mashery.trafficmanager.model.CustomerSite

Extended Attributes
The traffic manager model allows defining name-value pairs on different levels of the
model. The levels are identified here:

l Application

l Customer Site

l Key (both API Key and Package Key)

l Package

l Plan

l User

Boomi Cloud™ API Management - Local Edition SDK Guide

30 | Developing Processors and Authenticators

For more information, see Accessing and Using Extended Attributes.

Pre and Post Processor Extension Points
This version of the SDK allows extensions for Processors only. This means that only pre
and post processing of requests prior to invocation of the target host are allowed.

Listener Pattern
The extension API leverages a listener pattern to deliver callbacks to extension points to
allow injecting custom logic.

A call made to the traffic manager is an invocation to a series of tasks. Each step in the
workflow accomplishes a specific task to fulfill the call. The current API release only
allows customization of the tasks prior to invoking the API server (pre-process) and post
receipt of the response from the API server (post-process). The callback API handling
these extensions is called a Processor.

The pre-process step allows a processor to receive a fully-formed HTTP request
targeted to the API server. The processor is allowed to alter the headers or the body of
the request prior to the request being made to the server. Upon completion of the
request and receiving the response the Traffic Manager allows the processor to alter the
response content and headers prior to the response flowing back through a series of exit
tasks out to the client.

Event Types and Event
The transition of the call from one task to the next is triggered through events and an
event is delivered to any subscriber interested in receiving the event. The SDK supports
two event-types which are delivered synchronously:

l Pre-Process Event type: This event is used to trigger any pre-process task.

l Post-Process Event type: This event is used to trigger any post-process task.

l Authentication Event type: This event is used to trigger any custom
authentication.

The subscribers in this case will be Processors registered in a specific manner with the
Traffic Manager API.

Boomi Cloud™ API Management - Local Edition SDK Guide

31 | Developing Processors and Authenticators

Event Listener API
The Traffic Manager SDK provides the following interface and is implemented by custom
processors to receive Processor Events.

package com.mashery.trafficmanager.event.listener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
/*** Event listener interface which is implemented by listeners which wish to handle Traffic events.
Traffic events will be delivered via this callback synchronously to handlers implementing the
interface.
The implementers of this interface subscribe to events via annotations. E.g. Processor events need
to handle events by using annotations in the com.mashery.proxy.sdk.event.processor.annotation */
public interface TrafficEventListener {

/*** The event is delivered to this API @param event*/
void handleEvent(TrafficEvent event);

}

Importing Existing Adapters
Adapters developed using versions prior to Local Edition 5.x SDK can be imported in the
new version of the SDK.
To import existing adapters:

Procedure
1. Create a new adapter project using the create-adapter.sh/bat script.

Note: The project name and other package name must be same as the
existing adapter project that you want to import.

2. Copy the existing source package into the newly created sub-project.

3. Copy the third-party libraries into the lib folder of the sub-project.

Note: For an existing adapter being developed as a maven-based
project, provide the gradle form of dependencies in the sub-project's
build.gradle file. For more information, see the Referring to Third-Party
Libraries topic.

Boomi Cloud™ API Management - Local Edition SDK Guide

32 | Developing Processors and Authenticators

Developing and Packaging Multiple Adapters
A project in SDK terminology is a bundle that will be packaged and deployed to the
traffic manager, and will show up as an OSGi bundle in the traffic manager.

A bundle can either package a single adapter or multiple adapters per user choice.
Adapters' boiler plate code can be generated using the adapter creation script.

Developing Multiple Adapters
l One project per adapter

./create-adapter.sh -p <New adapter project name> -c <New adapter full package name> -a <New
Adapter class name>

Example

./create-adapter.sh -p DemoProject1 -c com.tibco.apim.examples1 -a DemoAdapter1

./create-adapter.sh -p DemoProject2 -c com.tibco.apim.examples2 -a DemoAdapter2

Running the above two commands will create two new projects under the extract
location <extract location>/MasheryLocalSDK/ with one adapter class each.

l Multiple adapters per project

1. Create a new project with a new adapter class.

./create-adapter.sh -p <New adapter project name> -c <New adapter full package
name> -a <New Adapter class name>

2. Create an adapter class in same project.

./create-adapter.sh -p <Existing adapter project name> -c <Existing/New adapter full
package name> -a <New Adapter class name>

Example

./create-adapter.sh -p DemoProject1 -c com.tibco.apim.examples1 -a DemoAdapter1

Boomi Cloud™ API Management - Local Edition SDK Guide

33 | Developing Processors and Authenticators

./create-adapter.sh -p DemoProject1 -c com.tibco.apim.examples1 -a DemoAdapter2

Running these two commands creates a Demo project with two adapter classes in
package. com.tibco.apim.examples1.

l Bundling Multiple adapters

Use the build-adapters.sh script to compile; build jars and bundle them as a
deployable artifact. The script ensures that the adapters are packaged properly.

Using the Adapter SDK in an IDE
You can create adapters using the following IDE:

l Eclipse

l IntelliJ Idea

l Apache Netbeans

Creating an Adapter using Eclipse
Preparing Eclipse:

Procedure
1. On the Eclipse user interface, point the Help tab and click Eclipse Marketplace.

2. Search Gradle and install.

Boomi Cloud™ API Management - Local Edition SDK Guide

34 | Developing Processors and Authenticators

Importing the Local Edition SDK into Eclipse IDE

Procedure
1. On the File tab, click Import.

Boomi Cloud™ API Management - Local Edition SDK Guide

35 | Developing Processors and Authenticators

2. In the Import dialog box, select the Gradle project.

Boomi Cloud™ API Management - Local Edition SDK Guide

36 | Developing Processors and Authenticators

3. The Import Gradle Project wizard opens, follow through till the end. Close the
wizard by clicking Finish.

4. The explorer shows the uploaded project with its contents.

Boomi Cloud™ API Management - Local Edition SDK Guide

37 | Developing Processors and Authenticators

Creating an Adapter using IntelliJ IDEA
Preparing IntelliJ IDEA:

Procedure
1. Open IntelliJ IDEA and click Import Project.

Boomi Cloud™ API Management - Local Edition SDK Guide

38 | Developing Processors and Authenticators

2. In the Import Project dialog box, navigate to the Local Edition SDK folder as input
for Gradle project.

Boomi Cloud™ API Management - Local Edition SDK Guide

39 | Developing Processors and Authenticators

Select the Gradle options as shown in the image.

3. Click Finish to upload the project. The content of the project can be seen in the
project view.

Boomi Cloud™ API Management - Local Edition SDK Guide

40 | Developing Processors and Authenticators

Copy required third party libraries in the lib folder of the sub project.

Creating an Adapter using Apache NetBeans
To create an adapter using Apache NetBeans:

Procedure
1. Open the Apache NetBeans software.

2. On the File menu, click Open Project.
l For Windows, use: Ctrl+Shift+O

l For Mac, use: CMD+Shift+O

3. Navigate to the Local Edition SDK folder. It will be annotated with . Click
Open.

The primer build will take few minutes to compile.

4. On the Project node, right click and select Clean and Build.

5. On the Project node, right click and select Open Required projects and click
Open all projects.

6. The newly created project is now visible.

Boomi Cloud™ API Management - Local Edition SDK Guide

41 | Developing Processors and Authenticators

The libraries for each of the sub projects can be viewed by expanding the
configuration node.

Boomi Cloud™ API Management - Local Edition SDK Guide

42 | Developing Processors and Authenticators

Boomi Cloud™ API Management - Local Edition SDK Guide

43 | Developing Processors and Authenticators

Adding Third-Party Libraries in an Adapter
You can use third-party libraries in an adapter.
To enable third-party libraries in classpath and run time:

Procedure
1. Copy the third party jars into the adapter sub project/lib folder.

2. In IntelliJ IDEA and Apache NetBeans, rebuild the main project from within the IDE
for the newly-added jars to be included.

3. For Eclipse: Configure build path of the project to add all the third-party jars.

Adding third-party library for Eclipse
environment

Procedure
1. In the project structure, right click the MasheryAdapter folder, point Build Path

and click Configure Build Path.

Boomi Cloud™ API Management - Local Edition SDK Guide

44 | Developing Processors and Authenticators

2. Navigate to the library location and click Add External JARs

3. Select the files you wish to add and click Open.

Boomi Cloud™ API Management - Local Edition SDK Guide

45 | Developing Processors and Authenticators

4. The files are added to the library. Click OK.

Referring to Third-party Libraries with Dependency
You can use third party libraries for an adapters. Few third-party libraries have transitive
dependencies. You have to include these dependencies in the lib folder.

Gradle supports reference to third-party libraries and then resolve the transitive
dependencies.
To refer third -party dependency for an adapter sub project:

Procedure

Boomi Cloud™ API Management - Local Edition SDK Guide

46 | Developing Processors and Authenticators

1. Navigate to the JCenter repository (https://bintray.com/bintray/jcenter) or to the
Maven central repository (https://mvnrepository.com/repos/central).

2. Select the required library and click Gradle.

3. Copy the dependency text.

The dependency text will be in the form of compile
'org.apache.commons:commons-lang3:3.9

4. Open the build.gradle file of the sub-project in a text editor.

5. In the dependenciessection, add the dependency text of step 3.

Note: Adding the direct dependency on jackson-bind, includes the
transitive dependency for jackson-core and jackson-annotations.

https://bintray.com/bintray/jcenter
https://mvnrepository.com/repos/central

Boomi Cloud™ API Management - Local Edition SDK Guide

47 | Debugging the Adapter

Debugging the Adapter
Stages of debugging an adapter are as follows:

1. Adding logger utility class.

2. Changing LogLevels.

3. Checking adapter logs.

Adding Logger Utility Class
To debug the adapters, use com.mashery.trafficmanager.debug.Logger, a new utility
class. This logs "debug"," info","warn", and "error log" statements.

Example statement

com.mashery.trafficmanager.debug.Logger.info(MyAdapter.class,"Info statement for request
param {} and value {},paramName, paramValue)

Procedure
1. In the adapter class, add:

com.mashery.trafficmanager.debug.Logger.info(MyAdapter.class,"Info statement for
request param {} and value {},paramName, paramValue)

Note: Use parameterized messages patterns instead of concatenating
variables to the message.

Changing Log Levels
The default log level for messages from the adapter is 'INFO'. To change the LogLevel
to DEBUG, use the Cluster Manager commands. To change LogLevel for adapters, log

Boomi Cloud™ API Management - Local Edition SDK Guide

48 | Debugging the Adapter

into the tml-cm container using docker exec or kubectl exec as applicable to the
deployment method.

To list components:

Run the command:

clustermanager ls components

Example component ID listing

clustermanager ls components

Component ID Component Type Component Name Component Status
Component Host Component Agent Port Component Service Port(s)
------------------------------------- -------------------- -------------------- -------------------- -------------------- ----------
------------ ---------------------------
bb32be63-2a72-455e-9ffd-3e65174d119a logservice log ACTIVE 10.0.0.9

9080 24224
d9927ae6-8135-4360-8031-4493e2cfd9e6 sql sql ACTIVE 10.0.0.11
9080 3306
d2b75938-bcd5-40e9-b260-41abb0418ba7 nosql nosql ACTIVE 10.0.0.5

9080 9042
fca40c79-36eb-4599-a0b4-bbe417d7bbbd cache cache ACTIVE 10.0.0.13

9080 11212,11211,11213,11214,11215,11216
1bdbc338-946d-42df-a535-5f72b0144372 trafficmanager tm ACTIVE
10.0.0.16 9080 8080
388ca01b-1442-4a5e-856c-775325af8bbd trafficmanager tm ACTIVE
10.0.0.15 9080 8080

The component types for the Traffic Manager is trafficmanager.

To see current LogLevel for custom adapters

Run the command:

clustermanager ls loggers --componentType trafficmanager --componentId <component id>

Output of List Loggers

clusterId [1cac153d-48db-4d5c-b3fc-9d25673ee536] and zoneId [a127e639-737c-4220-b42f-
da9f14e939dc]
Using cluster name [Tibco APIM-LE Reference Cluster]

Boomi Cloud™ API Management - Local Edition SDK Guide

49 | Debugging the Adapter

Using Zone name [local]
Using Component ID [1bdbc338-946d-42df-a535-5f72b0144372] of type [trafficmanager]
LoggerName LogLevel Process
-- ---------- --------------------
...A list of other loggers... INFO
MasheryCustomAdapter INFO

To change log level for custom adapters

Run the command:

clustermanager set loglevel --componentType trafficmanager --logLevel DEBUG --loggerName
MasheryCustomAdapter

Acceptable values for log level are:

l OFF

l INFO

l DEBUG

l WARN

l ERROR

Note: It will take some time for the Log Level change to be reflected in the
traffic manager.

To verify that the LogLevel has changed

Command to list loggers on traffic manager:

clustermanager ls loggers --componentType trafficmanager --componentId <component id>

clusterId [1cac153d-48db-4d5c-b3fc-9d25673ee536] and zoneId [a127e639-737c-4220-b42f-
da9f14e939dc]
Using cluster name [Tibco APIM-LE Reference Cluster]
Using Zone name [local]
Using Component ID [1bdbc338-946d-42df-a535-5f72b0144372] of type [trafficmanager]

Boomi Cloud™ API Management - Local Edition SDK Guide

50 | Debugging the Adapter

LoggerName LogLevel Process
-- ---------- --------------------
...A list of other loggers... INFO
MasheryCustomAdapter DEBUG

Checking Adapter Logs
The logs are all stored on the Log service (tml-log) pod or container at /mnt/data/tml-
tm/<hostname/ipaddress>/tmdata/proxy_error/proxy_error.log and /mnt/data/tml-
tm/<hostname/ipaddress>/tmdata/proxy_debug/proxy_debug.log.

Open the log file and search for messages containing text: MasheryCustomAdapter.

Debugging SDK Processor Remotely

Note: You can debug remotely only in the quick start mode.

Preparing Traffic manager container

1. Set up the cluster and connect to the tml-tm container.

docker ps | grep -i tml-tm

docker exec -it {tml-tm-container_id} bash

2. Enable Javaproxy with debugger agent by executing the following command:

Edit the file /opt/javaproxy/proxy/proxy.ini and add below line at the end
-agentlib:jdwp=transport=dt_socket,address=8001,server=y,suspend=n

Save the changes.

3. Restart the proxy as shown below.

/etc/init.d/javaproxy restart

Boomi Cloud™ API Management - Local Edition SDK Guide

51 | Debugging the Adapter

Preparing the IDE

Eclipse

1. Open IDE and configure the debugger to connect to a remote port.

2. Click Debug Configurations.

3. The Debug Configurations window opens, here click Remote Java Application.

Boomi Cloud™ API Management - Local Edition SDK Guide

52 | Debugging the Adapter

4. Click New button , to create a new configuration. The right side of the screen
displays options to create new configuration.

5. In the Connect tab, select the Project by clicking Browse. In the Project selection
window, select the SDK Processor's project.

Boomi Cloud™ API Management - Local Edition SDK Guide

53 | Debugging the Adapter

6. In the Connection Properties field, for the Host field, input the node's IP and for
Port, input 8001. Click Apply and then click Debug.

IntelliJ Idea

1. From the main menu, click Run option and select Edit Configuration.

2. Click button and select Remote from the configuration list.

3. In the tree structure, click SDK Debug. In the Debugger mode field, select Attach
to remote JVM. For the Host field, input the node's IP and for Port, input 8001.

Boomi Cloud™ API Management - Local Edition SDK Guide

54 | Debugging the Adapter

On successful completion, you can see the toolbar in the IntelliJ Idea window. Click the
green debug icon,when you wish to debug.

Apache NetBeans

1. In the NetBeans window, click Debug menu, and then click Attach Debugger.

2. The Attach dialog box opens, here provide the input for Debugger, connector and
Transport.

Boomi Cloud™ API Management - Local Edition SDK Guide

55 | Debugging the Adapter

3. For the Host field, input the node's IP and for Port, input 8001. Click OK.
The debug view opens. Set the required breakpoints in the processor code and call an
end point.

Fix, Build and Deploy
Fix

Fix the issues found on debugging by fixing the code.
Build

1. Run the built script.

/home/user/MasheryLocalSDK$./build-adapter.sh

Note: The build script reports the compilation errors. In case of any
reported errors rerun the build script.

2. The script generates an archive file as tml-mashery-customer-extension.zip under
MasheryLocalSDK. Upload this file to the Local Edition installer.

Deploy

1. Find the container ID of the tml-tm container using the following command:

Boomi Cloud™ API Management - Local Edition SDK Guide

56 | Debugging the Adapter

docker ps | grep -i "tml-installer"

2. Copy the upload-deploy-sdk-processor.sh script from the installer to the local path.

docker{tml-installer-contianer-id}:/var/jenkins_home/docker-deploy/docker-
swarm/system/upload-deploy-sdk-processor.sh {path_to_save}

3. Use the upload-deploy-sdk-processor.sh script to upload and deploy the already built
SDK processors in the tml-tm container.

./upload-deploy-sdk-processor.sh --help
Usage: ./upload_deploy_sdk_processor.sh [--adapter-zip <ADAPTER_FULL_PATH>] [--tml-
tm-container <TM_CONTAINER>]

(--adapter-zip | -a) - path/filename of the adapter zip to be uploaded to container
(--tml-tm-container| -c) - TML-TM Container ID where adapter to be uploaded

Example: ./upload-deploy-sdk-processor.sh --adapter-zip

/home/user/MasheryLocalSDK/dist/tml-mashery-customer-extension.zip --tml-tm-container
9c9e09ea1f95

4. Log in the tml-tm container,

docker exec -it {tml-tm-container-id} bash

and restart thejavaproxy service using the following command:

/etc/init.d/javaproxy restart

Boomi Cloud™ API Management - Local Edition SDK Guide

57 | Implementing and Registering Processors and Adapters

Implementing and Registering Processors
and Adapters

Implementing a Processor or Adapter

Creating a Pre-processing Adapter
Pre-processing an adapter comprises the following three stages:

1. Reading body content of request.

2. Modifying the request body.

3. Terminating further processing for unavailable header.

For details on how to access and use extended attributes, such as sending the response
body to another location other than the caller, see Accessing and Using Extended
Attributes.

Reading Body Content of Request

Procedure
1. In the request, get the ContentSource.

2. From the ContentSource, get the inputStream.

3. Read content from the InputStream.

ContentSource body = event.getCallContext().getRequest().getBody();
final InputStream inputStream = body.getInputStream() ;
//use input stream to read content
//Do something with the content

Boomi Cloud™ API Management - Local Edition SDK Guide

58 | Implementing and Registering Processors and Adapters

Note:
Refer working code in examples/ReadRequestBody.java.

Modifying the Request Body
To modify the request body in the pre-processing stage employ the content source and
content producer to read from and write to the HTTP request.

Procedure
1. Get Content source from request.

2. Get input stream from Content source.

3. Read content from the input stream.

4. Modify the content.

5. Create a content producer.

6. Set the request body to the created content producer.

ContentSource body = event.getCallContext().getRequest().getBody();
final InputStream inputStream = body.getInputStream() ;
//use input stream to read content
//modify content
httpReq.setBody(new ContentProducer() { //set new content body

.........
public void writeTo(OutputStream out) throws IOException {

out.write("modified content")
out.flush();
out.close();

}
});

Note:
Refer to the working code in examples/ModifyRequestBody.java.

Boomi Cloud™ API Management - Local Edition SDK Guide

59 | Implementing and Registering Processors and Adapters

Terminating Further Processing for Unavailable
Header

Checking for Header

1. Get the headers from either HttpClientRequest or HTTPServerRequest of an
event.

2. Check the header.

3. If the header is not present or value is not proper then you can terminate the
request and Local Edition would not send the request to target server.

4. You would be able to set the status code and status message in case of
termination of call in pre/post processing.

private void doPreProcessEvent(PreProcessEvent event) throws IOException {
MutableHTTPHeaders headers = event.getClientRequest().getHeaders();
String custHeader = headers.get("X-Custom-Header");
if(null == custHeader || !custHeader.equals("Allowed")){

event.getCallContext().getResponse().getHTTPResponse().setStatusCode
(HttpURLConnection.HTTP_BAD_REQUEST);

event.getCallContext().getResponse().getHTTPResponse().setStatusMessage
("Custom Header is not set in the client request");

event.getCallContext().getResponse().setComplete();
}

}

Checking Parameter

1. Get CallContext from event.

2. From CallContext get ApplicationRequest.

3. You can check for any parameter passed in the QueryData of ApplicationRequest.

4. If the parameter is missing then user/developer can terminate the request and
Local Edition would not sent the request to target server. You can terminate the
process and set the status code and status message.

private void doPreProcessEvent(PreProcessEvent event) {
//Remove below line and implement code to pre process the call request

Boomi Cloud™ API Management - Local Edition SDK Guide

60 | Implementing and Registering Processors and Adapters

String custParam = event.getCallContext().getRequest().getQueryData().get
("customParam");

if (custParam == null) {
event.getCallContext().getResponse().getHTTPResponse().setStatusCode

(HttpURLConnection.HTTP_BAD_REQUEST);
event.getCallContext().getResponse().getHTTPResponse().setStatusMessage

("Custom Header is not set in the client request");
event.getCallContext().getResponse().setComplete();

}
}

Creating a Post-processing Adapter
Post-processing for an adapter comprises of:

1. Add custom header to the response to client.

2. Modifying body content of response to client.

Add Custom Header to the Response to Client

Procedure
1. Get TrafficManagerResponse from the call context of an event.

2. Get HTTPServerResponse from TrafficManagerResponse.

3. Get Headers from HTTPServerResponse and add new header to
MutableHTTPHeaders list.

private static final String CUSTOM_HEADER="X-CUSTOM-HEADER";
private static final String CUSTOM_HEADER_VALUE="POST-PROCESSED";

@Override
public void handleEvent(TrafficEvent event) {

if(event instanceof PostProcessEvent){
Logger.debug(AddHeaderPostProcessor.class, "Handling post process event");
doPostProcessEvent((PostProcessEvent) event);

}
}

Boomi Cloud™ API Management - Local Edition SDK Guide

61 | Implementing and Registering Processors and Adapters

private void doPostProcessEvent(PostProcessEvent event) {
MutableHTTPHeaders headers = event.getCallContext().getResponse

().getHTTPResponse().getHeaders();
if(event.getCallContext().getResponse().getHTTPResponse().getStatusCode() == 200){

headers.add(CUSTOM_HEADER,CUSTOM_HEADER_VALUE);
}

}

Note:
Refer to the working code in examples/ AddHeaderPostProcessor.java.

Modifying Body Content of Response to Client
To modify the request body in the pre-processing stage, employ the content source and
content producer to read from and write to the HTTP request.

Procedure
1. Get HTTPClientResponse from the call context of an event.

2. Get ContentSource from the HTTPClientResponse.

3. Get InputStream from ContentSource and convert it into String.

4. Add or Modify the String content and set the body of HTTPServerResponse with
new content. (HTTPServerResponse can be obtained from
TrafficManagerResponse of call context of an event.)

private static final String CUSTOM_HEADER="X-CUSTOM-HEADER";
private static final String CUSTOM_HEADER_VALUE="POST-PROCESSED";

@Override
public void handleEvent(TrafficEvent event) {

if(event instanceof PostProcessEvent){
Logger.debug(AddHeaderPostProcessor.class, "Handling post process event");
doPostProcessEvent((PostProcessEvent) event);

}
}

private void doPostProcessEvent(PostProcessEvent event) {

Boomi Cloud™ API Management - Local Edition SDK Guide

62 | Implementing and Registering Processors and Adapters

ExtendedAttributes attrs = (event).getKey().getExtendedAttributes();
String strAllowed = attrs.getValue("EAV_CallAllowed");
if(strAllowed != null && !Boolean.parseBoolean(strAllowed)){

event.getCallContext().getResponse().getHTTPResponse().setStatusCode(401);
event.getCallContext().getResponse().getHTTPResponse().setBody(new

StringContentProducer("{\"error\":\"Call not allowed for this key\"}"));
event.getCallContext().getResponse().setComplete();

}

}

Note:
Refer to the working code in examples/ AddBodyContentPostProcessor.java.

Creating a Custom Authenticator
A customer authenticator comprises of:

1. Stopping processing request on authentication failure.

2. Continuing processing request for successful authentication.

Stopping a Processing Request on Authentication
Failure

Procedure
1. Get the headers from the HTTPServerRequest.

2. Check for authentication header.

3. Validate the value of authentication header. On validation failure, set the
TrafficManagerResponse to complete.

4. Local Edition would terminate the request and return ERR_403_NOT_AUTHORIZED
error.

Boomi Cloud™ API Management - Local Edition SDK Guide

63 | Implementing and Registering Processors and Adapters

Note: You cannot change the status code or status message from the
adapter.

Unsuccessful Authentication

private void doAuthenticateEvent(AuthenticationEvent event)
throws ProcessorException {

//For example request doesn't contain the authorization header then user can terminate
the call by marking response as complete

// in order to thrown 403 ERR_403_NOT_AUTHORIZED for the incoming request.
HTTPHeaders headers = event.getServerRequest().getHeaders();
if (headers != null) {
String authorization = headers.get(HEADER_AUTHORIZATION);
if ((null == authorization || authorization == "")

|| !authorization.startsWith(AUTH_BASIC)) {
Logger.warn(MyCustomAuthenticator.class,"Error validating the authentication

header {}",HEADER_AUTHORIZATION);
event.getCallContext().getResponse().setComplete();

}
}

Note: If the authentication fails to prevent further processing, set the
following:

event.getCallContext().getResponse().setComplete();

Refer to the working code in examples/MyCustomAuthenticatorFailed.java.

Continue Processing Request for Successful
Authentication

Procedure
1. Get the headers from the HTTPServerRequest.

2. Check for authentication header.

3. Validate the value of authentication header. On validation success, return from the
adapter and continue processing.

Boomi Cloud™ API Management - Local Edition SDK Guide

64 | Implementing and Registering Processors and Adapters

Successful Authentication

if (userId.equals("userName") && password.equals("userPassword")) {
Logger.info(MyCustomAuthenticatorFailed.class,"Basic Authentication is successful");

}

Implementing the Event Listener
To implement the event listener:

Procedure
1. Employ the Traffic Event Listener interface (introduced in Event Listener API) as

shown in the following example:

package com.company.extension;
public class CustomProcessor implements TrafficEventListener{

public void handleEvent(TrafficEvent event){
//write your custom code here

}
}

2. Annotate your code to ensure that the processor is identified correctly for callbacks
on events related to the specific endpoints it is written to handle:

@ProcessorBean(enabled=true, name=”com.company.extension.CustomProcessor”,
immediate=true)
public class CustomProcessor implements TrafficEventListener{

public void handleEvent(TrafficEvent event){
//write your custom code here

}
}

The annotation identifies the following properties:

l enabled: Identifies if the processor is to be enabled.

l name: Identifies the unique name of the processor as configured in API
Settings (see marked area in ‘red’ in the following screenshot).

l immediate: Identifies if the processor is enabled immediately.

Boomi Cloud™ API Management - Local Edition SDK Guide

65 | Implementing and Registering Processors and Adapters

Note: The name used in the annotation for the Processor MUST be the
same as configured on the portal for the Endpoint>Pre/Post Processing,
as shown in the following screenshot:

Implementing Lifecycle Callback Handling
If you wish to have some initialization work done once and only once for each of the
processors, then implement the following interface:

package com.mashery.trafficmanager.event.listener:

/*** The lifecycle callback which gets called when the processor gets loaded when installed and
released*/
public interface ListenerLifeCycle {
/*** The method is called once in the life-cycle of the processor before the processor is deemed

ready to handle requests. If the processor throws an exception, the activation is assumed to be a
failure and the processor will not receive any requests @throws ListenerLifeCycleException*/
public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException;

/*** The method is called once in the life-cycle of the processor before the processor is removed
due. The processor will not receive any requests upon inactivation.*/
public void onUnLoad(LifeCycleContext ctx);

}

Boomi Cloud™ API Management - Local Edition SDK Guide

66 | Implementing and Registering Processors and Adapters

The onLoad call is made once prior to the processor handling any requests and
onUnLoad call is made before the processor is decommissioned and no more requests
are routed to it.

The lifecycle listener can be implemented on the Processor class or on a separate class.
The annotation needs to add a reference to the lifecycle-class if the interface is
implemented (see highlighted property in bold).

package com.company.extension;
@ProcessorBean(enabled=true, name=”com.company.extension.CustomProcessor”,
immediate=true, lifeCycleClass=”com.company.extension.CustomProcessor”)
public class CustomProcessor implements TrafficEventListener, ListenerLifeCycle{
public void handleEvent(TrafficEvent event){
//write your custom code here

}
public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException{
}
public void onUnLoad(LifeCycleContext ctx){
}

}

Note: The lifeCycleClass property should point to the class implementing the
Listener LifeCycle interface. This also allows having a separate lifecycle
listener interface as follows (note the different lifeCycleClass name).

The following example shows a different class implementing the LifeCycle callback:

package com.company.extension;
@ProcessorBean(enabled=true, name=”com.company.extension.CustomProcessor”,
immediate=true, lifeCycleClass=”com.company.extension.CustomProcessorLifeCycle”)
public class CustomProcessor implements TrafficEventListener {

public void handleEvent(TrafficEvent event){
//write your custom code here

}
public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException{
}
public void onUnLoad(LifeCycleContext ctx){
}

}
public class CustomProcessorLifeCycle implements ListenerLifeCycle{

public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException{
}
public void onUnLoad(LifeCycleContext ctx){

Boomi Cloud™ API Management - Local Edition SDK Guide

67 | Implementing and Registering Processors and Adapters

}
}

Caching Content
You can interact with memcache using the Local Edition SDK. The memcached is a part
of the Local Edition setup. A key-value pair can be stored in the cache.

The cache interface provided in the callback to the TrafficEventListener is:

package com.mashery.trafficmanager.cache;
/*** Cache API which allows extensions to store and retrieve data from cache*/
public interface Cache {
/**
* Retrieves the value from the cache for the given key
* @param key
* @return
* @throws CacheException
*/
Object get(String key) throws CacheException;
/**
* Puts the value against the key in the cache for a given ttl
* @param key
* @param value
* @param ttl
* @throws CacheException
*/
void put(String key, Object value, int ttl) throws CacheException;

}

A reference to the cache can be found on the ProcessorEvent which is reported on the
callback. Here is an example of how to access cache on callback:

package com.company.extension;
@ProcessorBean(enabled=true, name=”com.company.extension.CustomProcessor”,
immediate=true
public class CustomProcessor implements TrafficEventListener, ListenerLifeCycle{
public void handleEvent(TrafficEvent event){

ProcessorEvent processorEvent = (ProcessorEvent) event;
Cache cacheReference = processorEvent.getCache();
//Add data to cache
try{

Boomi Cloud™ API Management - Local Edition SDK Guide

68 | Implementing and Registering Processors and Adapters

cacheReference.put(“testkey”, “testValue”, 10)
}catch(CacheException e){
//load data or load default data
}

//write your custom processor code here
}

}

A reference to cache is also available on the lifecycle callback:

package com.company.extension;
public class CustomProcessorLifeCycle implements ListenerLifeCycle{

public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException{
Cache cache = ctx.getCache();
// perform cache operations

}
public void onUnLoad(LifeCycleContext ctx){
}

}

For more information, see examples/CacheAccess.java.

Terminating a Call During Processing of an
Event
This version of the SDK allows a user to terminate a call during pre or post processing,
or in authentication event handling. For example, if the request does not have a required
URL parameter, Local Edition can be configured to terminate the call in the pre-
processing.

Note: All the headers, status code and status messages set in the custom
processing is returned to the client as part of the response in pre processing
and post processing.

Boomi Cloud™ API Management - Local Edition SDK Guide

69 | Implementing and Registering Processors and Adapters

Note: All the headers, status code and status messages set in the custom
authentication would not be returned as part of response in case of
Authentication Event handling (Custom authenticator). If you want to fail
authentication request from the custom authenticator, then you need to
terminate the call in order to throw "ERR_403_NOT_AUTHORIZED" for a
request.

For example, if you want to terminate the call in authenticator, if request doesn't contain
the authorization header, then the call can be terminated by marking the response as
complete as shown in the following example:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.mashery.http.HTTPHeaders;
import com.mashery.trafficmanager.debug.DebugContext;
import com.mashery.trafficmanager.event.listener.Authenticator;
import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.processor.model.AuthenticationEvent;
import com.mashery.trafficmanager.event.processor.model.PostProcessEvent;
import com.mashery.trafficmanager.event.processor.model.PreProcessEvent;
import com.mashery.trafficmanager.processor.ProcessorBean;
import com.mashery.trafficmanager.processor.ProcessorException;

@ProcessorBean(enabled = true, name = "CustomAuthentication", immediate = true)

public class CustomAuthentication implements TrafficEventListener,Authenticator {

@Override
public void handleEvent(TrafficEvent event) {

try {
if (event instanceof AuthenticationEvent) {

authenticate((AuthenticationEvent) event);
}

} catch (ProcessorException e) {
}

}

private void authenticate(AuthenticationEvent event)
throws ProcessorException {

//For example request doesn't contain the authorization header then user can terminate the call
by marking response as complete

// in order to thrown 403 ERR_403_NOT_AUTHORIZED for the incoming request.
if (headers != null) {

Boomi Cloud™ API Management - Local Edition SDK Guide

70 | Implementing and Registering Processors and Adapters

String authorization = headers.get(HEADER_AUTHORIZATION);
if ((null == authorization || authorization == "")

|| !authorization.startsWith(AUTH_BASIC)) {
debugContext.logEntry("Final Value", "DIY-CUSTOM-AUTH-HEADER-FAILIURE");
event.getCallContext().getResponse().setComplete();

}
}

}

If you want to terminate the call in pre or post processing, refer to the following example:

package com.mashery.processor;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.listener.Authenticator;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.processor.model.PostProcessEvent;
import com.mashery.trafficmanager.event.processor.model.PreProcessEvent;
import com.mashery.trafficmanager.model.core.ExtendedAttributes;
import com.mashery.trafficmanager.processor.ProcessorBean;
import com.mashery.trafficmanager.processor.ProcessorException;

@ProcessorBean(enabled = true, name = "PrePostProcessing", immediate = true)

public class PrePostProcessing implements TrafficEventListener{

private final Logger log = LoggerFactory.getLogger(PrePostProcessing.class);

@Override
public void handleEvent(TrafficEvent event) {

try {
if (event instanceof PreProcessEvent) {

preProcess((PreProcessEvent) event);
} else if (event instanceof PostProcessEvent) {

postProcess((PostProcessEvent) event);
}

} catch (ProcessorException e) {
log.error("Exception occurred when handling processor event");

}
}

//In the below example we checking the query parameter's value to decide whether to terminate
the call or not.

private void preProcess(PreProcessEvent event) throws ProcessorException {

Boomi Cloud™ API Management - Local Edition SDK Guide

71 | Implementing and Registering Processors and Adapters

String complete = event.getCallContext().getRequest().getQueryData().get("preComplete");
if (complete != null) {

event.getCallContext().getResponse().getHTTPResponse().setBody(new
StringContentProducer("{\"response\": \"Terminated the call in pre-processing\"}"));

event.getCallContext().getResponse().setComplete();
}

}
//In the below example we checking the query parameter's value to decide whether to terminate

the call or not.
private void postProcess(PostProcessEvent event) throws ProcessorException {

String complete = event.getCallContext().getRequest().getQueryData().get("postComplete");
if (complete != null) {

event.getCallContext().getResponse().getHTTPResponse().setBody(new
StringContentProducer("{\"response\": \"Terminated the call in post-processing\"}"));

event.getCallContext().getResponse().setComplete();
}

}
}

Accessing and Using Extended Attributes
Extended attributes can be set on customer site, key (API or package key), application,
user, plan and package, and values . This is defined as per the model class.

The SDK includes an example custom processor that can access package Extended
Attribute Values (EAV) as follows:

Accessing extended attributes of Customer site

CustomerSite customerSite = event.getEndpoint().getAPI().getCustomerSite();
ExtendedAttributes customerSiteEAVs = customerSite.getExtendedAttributes();

Accessing extended attributes of key

Key key = event.getKey();
ExtendedAttributes keyEAVs = key.getExtendedAttributes();

#SECTION_458646D7029C423B91D07BB9DE884E66
#SECTION_B62A82C7643842099208C2C4AD1ECBE6
#SECTION_5E06B4C9D7644418926C7A8CBE658C98
#SECTION_D28DD1B08DC641379F1B279119B08744
#SECTION_37B2D2DB45AB4D9D84DE50E2A3A637B9
#SECTION_5C918C26B2F843818D3C2632EAD8DDBD

Boomi Cloud™ API Management - Local Edition SDK Guide

72 | Implementing and Registering Processors and Adapters

Accessing application extended attributes

Key key = event.getKey();
Application app = key.getApplication();
ExtendedAttributes appEAVs = app.getExtendedAttributes();

Accessing User extended attributes

Key key = event.getKey();
User user = key.getOwner();
ExtendedAttributes userEAVs = user.getExtendedAttributes();

Accessing plan and package extended attributes

CKey key = event.getKey();
if(key instanceof PackageKey){

Plan plan = ((PackageKey)key).getPlan();
ExtendedAttributes planEAVs = plan.getExtendedAttributes();
//use planEavs

//Packge extended attributes
com.mashery.trafficmanager.model.core.Package pkg = plan.getPackage();
ExtendedAttributes pkgEAVs = pkg.getExtendedAttributes();
//USe pkgEavs

Accessing values from Extended Attributes

//Get Extended attributes from one of the objects viz.
User user = event.getKey().getOwner();
ExtendedAttributes userEAVs = user.getExtendedAttributes();
String key = "user_defined_key";
String value = userEAVs.getValue(key);
Logger.debug(this.getClass(), "Found EAV for Key:{}, value: {}", key,value);

Boomi Cloud™ API Management - Local Edition SDK Guide

73 | Implementing and Registering Processors and Adapters

How to Send Response Body to Another
Location Other Than Caller
Once a response is streamed, it cannot be streamed again since the target would have
flushed and closed the stream. Use the com.mashery.http.server.HTTPServerResponse#setBody
method to set a specialized content producer that will stream to a caller and also a
secondary destination.

Defining a Content Producer

public class BiContentProducer implements ContentProducer{
@Override
public void writeTo(OutputStream out) throws IOException {

BufferedInputStream in = new BufferedInputStream(origin.getInputStream());
byte[]buffer = new byte[4096];
int c;
while((c = in.read(buffer)) != -1){

out.write(buffer, 0,c); //send response bytes to caller
secondaryStream.write(buffer); //send response bytes to secondary output.

//OPtionally write to secondary stream in a separate thread.
}
out.flush();
secondaryStream.flush();
secondaryStream.close();

}
}

Setting a Content Producer to the Response

try{
BiContentProducer contentProducer = new BiContentProducer(origin, keyId);
postProcessEvent.getServerResponse().setBody(contentProducer);

}catch(IOException e){
Logger.error(AuditProcessor.class, "Error in creating respnse providr", e);

}

For more information, refer to examples/PipeResponseAdapter.java and
examples/BiContentProducer.java in the Examples folder.

Boomi Cloud™ API Management - Local Edition SDK Guide

74 | Implementing and Registering Processors and Adapters

How to Externalize Properties and Files from
SDK-Built Adapters
You can use the SDK to create a Local Edition adapter that can read the file content of
/opt/mashery/containeragent/resources/properties/tml_tm_properties_final.json present inside the TM
container.

After building the Local Edition adapter, upload it into the Installer and create the Local
Edition cluster. The entries from file /tml_tm_properties.json are available.

Accessing Plan, Package and Application ID in
Custom Processor
You can access the plan, package and application ID of a processor.

Access to the plan, package and application ID is explained using a sample processor
as follows:

package com.tibco.apim.examples;

import com.mashery.trafficmanager.debug.Logger;
import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.processor.model.PreProcessEvent;
import com.mashery.trafficmanager.model.core.PackageKey;
import com.mashery.trafficmanager.processor.ProcessorBean;

@ProcessorBean(enabled = true, name = "com.tibco.apim.examples.PlanAndPackageIdAccess",
immediate = true)
public class PlanAndPackageIdAccess implements TrafficEventListener{

@Override
public void handleEvent(TrafficEvent event) {

if (event instanceof PreProcessEvent) {
Logger.debug(PlanAndPackageIdAccess.class, "Handling pre process event");
doPreProcessEvent((PreProcessEvent) event);

}
}

Boomi Cloud™ API Management - Local Edition SDK Guide

75 | Implementing and Registering Processors and Adapters

private void doPreProcessEvent(PreProcessEvent event) {
//Get Key from the event and type cast it to Package key.
//From Package key plan, package and application details can be extracted.
PackageKey key = (PackageKey)event.getKey();
Logger.warn(PlanAndPackageIdAccess.class,"Plan Id is :" + key.getPlan().getId());
Logger.warn(PlanAndPackageIdAccess.class,"Package Id is :" + key.getPlan().getPackage

().getId());
Logger.warn(PlanAndPackageIdAccess.class,"Application Id is :" + event.getKey

().getApplication().getApplicationId());

}
}

For more information, refer to working code in examples/PlanAndPackageIdAccess.java file.

Boomi Cloud™ API Management - Local Edition SDK Guide

76 | Chaining of Processors

Chaining of Processors
Local Edition can support multiple pre-processing and post-processing processors per
endpoint. This is done by linking multiple processors into one configuration. The entire
process is called Chaining.

Note: You can chain only pre-processing and post-processing events. The
authentication event cannot be chained.

The following table describes chaining between different events.

Pre Process Event Post Process Event Authentication Event

Pre Process Event

Post Process Event

Authentication Event

Types of Chaining
l Chaining Processor Using Mashery_Proxy_Processor_Chain

The processor implements pre-process or post-process traffic events. These
processors can either be provided by Boomi or incorporated with the SDK.

To chain the processors use Mashery_Proxy_Processor_Chain.

l Chaining of Processor Using Chain Adapter

These processors can implement pre-process or post-process traffic events and
can be chained without using Mashery_Proxy_Processor_Chain and are provided by
Boomi.

The following are processors acting as chain adapter provided by Boomi.

Boomi Cloud™ API Management - Local Edition SDK Guide

77 | Chaining of Processors

o OAuth2JWT Authentication Connector

o OAuth2 Shared Token Connector

The following table provides information on various chaining combinations.

SDK Based
Adapters

Boomi
Provided
Adapters

Chain Adapter
OAuth2JWTAut
henticationCon
nector

Chain Adapter
OAuth2Shared
TokenConnect
or

SDK Based
Adapters

Using Mashery_
Proxy_Processor_
Chain

Using Mashery_
Proxy_Processor_
Chain

Using
OAuth2JWTAut
henticationConn
ector

Using
OAuth2JWTAut
henticationCon
nector

Boomi
Provided
Adapters Using Mashery_

Proxy_Processor_
Chain

Using Mashery_
Proxy_Processor_
Chain

Using
OAuth2JWTAut
henticationConn
ector

Using
OAuth2JWTAut
henticationCon
nector

Chain Adapter
OAuth2JWTAut
henticationCon
nector

Using
OAuth2JWTAut
henticationCon
nector

Using
OAuth2JWTAut
henticationCon
nector

Chain Adapter
OAuth2Shared
TokenConnect
or

Using
OAuth2JWTAut
henticationCon
nector

Using
OAuth2JWTAut
henticationCon
nector

Boomi Cloud™ API Management - Local Edition SDK Guide

78 | Chaining of Processors

Chaining of Processors Using Mashery_Proxy_
Processor_Chain
Using Mashery_Proxy_Processor_Chain processors can be chained in an untethered
environment and in a tethered environment.

Chaining Processors in an Untethered Environment

1. In the Configuration Manager, click the Endpoints tab and then click
Call Transformation.

2. Input the Adapter name with built-in adapter as Mashery_Proxy_Processor_Chain.

3. As per requirement, select the checkbox for Perform Preprocess/Perform
Postprocess or both.

4. In the Preinputs field, type the processors to be chained. The name of the
processor is the processors bean name. The syntax is:

processors:PROCESSOR1,PROCESSOR2

For example:

Boomi Cloud™ API Management - Local Edition SDK Guide

79 | Chaining of Processors

processors:com.mashery.local.MasheryCustomProcessorOne,com.mashery.local.MasheryCustomProces
sorTwo

You can also provide configuration data as input. The syntax is:

PROCESSOR1.parameter:value
PROCESSOR1.parameter:value
PROCESSOR2.parameter:value
PROCESSOR2.parameter:value

Note:

l In the pre-input configuration, there must not be more than one key
with name "processors".

l The processors to be chained must be input as comma separated
list.

5. In the Postinputs field, input the name of the adapter that the traffic manager can
use to post-process the calls, then click Save.

l The input syntax for the Postinputs fields must be the same as that of the
Preinputs field.

l If you opt for only Perform Postprocess, the input for Postinputs field must
be as follows:

processors:com.mashery.local.MasheryCustomProcessorOne,com.mashery.local.MasheryCusto
mProcessorTwo

and

PROCESSOR1.parameter:value
PROCESSOR1.parameter:value
PROCESSOR2.parameter:value
PROCESSOR2.parameter:value

Chaining Processors in a Tethered Environment

The process for chaining processors in a tethered environment is the same as that of
untethered. The interface of the control center appears as shown below:

Boomi Cloud™ API Management - Local Edition SDK Guide

80 | Chaining of Processors

What to do next
To test the changes, use the endpoint and make a traffic call.

Chaining of Processor Using Chain Adapter
Processors can be chained using a chain adapter in an untethered environment and in a
tethered environment.

Chaining Processors in an Untethered Environment

1. In the Configuration Manager, click the Endpoints tab and then click
Call Transformation.

Boomi Cloud™ API Management - Local Edition SDK Guide

81 | Chaining of Processors

2. In the Adapter field, input the name of the chain adapter. For example,
com.mashery.proxy.customer.generic.oauth2-jwt-authenticator.

3. As per requirement, select the checkbox for Perform Preprocess/Perform
Postprocess or both.

4. In the Preinputs field, type the processors to be chained. The name of the
processor is the processors bean name. The syntax is:

processors:PROCESSOR1,PROCESSOR2

For example:

processors:com.mashery.local.MasheryCustomProcessorOne,com.mashery.local.MasheryCustomProces
sorTwo

You can also provide configuration data as input. The syntax is:

PROCESSOR1.parameter:value
PROCESSOR1.parameter:value
PROCESSOR2.parameter:value
PROCESSOR2.parameter:value

Boomi Cloud™ API Management - Local Edition SDK Guide

82 | Chaining of Processors

Note:

l In the pre-input configuration, there must not be more than one key
with name "processors".

l The processors to be chained must be input as comma separated
list.

5. In the Postinputs field, input the name of the adapter that the traffic manager can
use to post-process the calls, then click Save.

l The input syntax for the Postinputs fields must be the same as that of the
Preinputs field.

l If you opt for only Perform Postprocess, the input for Postinputs field must
be as follows:

processors:com.mashery.local.MasheryCustomProcessorOne,com.mashery.local.MasheryCusto
mProcessorTwo

and

PROCESSOR1.parameter:value
PROCESSOR1.parameter:value
PROCESSOR2.parameter:value
PROCESSOR2.parameter:value

Chaining Processors in a Tethered Environment

The process for chaining processors in a tethered environment is the same as that of
untethered. The interface of the control center appears as shown below:

Boomi Cloud™ API Management - Local Edition SDK Guide

83 | Chaining of Processors

What to do next
To test the changes, use the endpoint and make a traffic call.

Boomi Cloud™ API Management - Local Edition SDK Guide

84 | FAQs

FAQs
l Do I need to install Gradle?

No. Gradle installation is not required. The SDK will take care of picking up the
right versions of Gradle.

l I already have Gradle. Will that affect working with the SDK?

No. The SDK will use the appropriate Gradle version.

l Can I push the extracted SDK along with my adapter subprojects into Version
control?

Yes. All required artifacts that need be version controlled are included and multi-
authoring is governed by specific version control systems.

l Can different sub projects contain different versions of same library?

Yes, but ensure the file names are different.

l I have multiple Java SE versions, which one should I use?

It is recommended to use Java SE 8 or higher version. The SDK will take care of
compiling to the required target version.

l How do I change the java version to be used by the SDK?

Open gradle.properties file and add the following:

org.gradle.java.home=/Path/To/Java SE HOME.

The home directory will be different for different OSes.

l How do I configure network proxy for Local Edition Local SDK?

Incase your internet access is governed by a network proxy, you can configure the
SDK using proxy.

For more information, see Configuring Network Proxy for Local Edition SDK.

Boomi Cloud™ API Management - Local Edition SDK Guide

85 | Boomi References

Boomi References
Refer to these links to learn more about Boomi privacy policy, terms of service, and
Boomi help documentation:

Privacy Policy
Terms of Service
Help Documentation

https://boomi.com/privacy/
https://boomi.com/legal/service/
https://help.boomi.com/

	Contents
	Overview
	The Local Edition SDK
	SDK Components
	System Requirements

	Quick Start
	Step 1: Creating an Adapter Project
	Pre or Post Processor
	Custom Authenticator

	Step 2: Packaging the Adapter
	Step 3: Uploading the Build Adapters to Local Edition-Installer Build Job
	Step 4: Building the Changing Local Edition-TM Docker image with Customer-Pro...
	Step 5: Configuring Endpoints for Processors
	Tethered

	Upgrading the Local Edition SDK 5.2 or 5.3 or 5.4 to Local Edition SDK 5.5
	Downgrading Local Edition SDK to an Earlier Version
	Configuring Network Proxy for Boomi Cloud™ API Management - Local Edition SDK
	Adapter SDK Package
	Boomi Cloud™ API Management - Local Edition Domain SDK
	Boomi Cloud™ API Management - Local Edition Infrastructure SDK

	Developing Processors and Authenticators
	SDK Domain Model
	Extended Attributes
	Pre and Post Processor Extension Points
	Listener Pattern
	Event Types and Event
	Event Listener API

	Importing Existing Adapters
	Developing and Packaging Multiple Adapters
	Using the Adapter SDK in an IDE
	Creating an Adapter using Eclipse
	Importing the Local Edition SDK into Eclipse IDE
	Creating an Adapter using IntelliJ IDEA
	Creating an Adapter using Apache NetBeans

	Adding Third-Party Libraries in an Adapter
	Adding third-party library for Eclipse environment
	Referring to Third-party Libraries with Dependency

	Debugging the Adapter
	Adding Logger Utility Class
	Changing Log Levels
	Checking Adapter Logs
	Debugging SDK Processor Remotely

	Implementing and Registering Processors and Adapters
	Implementing a Processor or Adapter
	Creating a Pre-processing Adapter
	Reading Body Content of Request
	Modifying the Request Body
	Terminating Further Processing for Unavailable Header

	Creating a Post-processing Adapter
	Add Custom Header to the Response to Client
	Modifying Body Content of Response to Client

	Creating a Custom Authenticator
	Stopping a Processing Request on Authentication Failure
	Continue Processing Request for Successful Authentication

	Implementing the Event Listener
	Implementing Lifecycle Callback Handling
	Caching Content
	Terminating a Call During Processing of an Event
	Accessing and Using Extended Attributes
	How to Send Response Body to Another Location Other Than Caller
	How to Externalize Properties and Files from SDK-Built Adapters
	Accessing Plan, Package and Application ID in Custom Processor

	Chaining of Processors
	Chaining of Processors Using Mashery_Proxy_Processor_Chain
	Chaining of Processor Using Chain Adapter

	FAQs
	Boomi References

